From 03ced2740f95eb2630aebd0d92beacd5ef07f0b6 Mon Sep 17 00:00:00 2001 From: dancing-ui <2779856074@qq.com> Date: Thu, 17 Oct 2024 23:20:15 +0800 Subject: [PATCH] =?UTF-8?q?[=E6=96=87=E6=A1=A3=E8=A1=A5=E5=85=85]=20?= =?UTF-8?q?=E5=88=A0=E9=99=A4=E6=97=A0=E7=94=A8=E6=96=87=E6=A1=A3?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Docs/2024-10-17/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Docs/2024-10-17/README.md b/Docs/2024-10-17/README.md index 755511b..df13c0d 100644 --- a/Docs/2024-10-17/README.md +++ b/Docs/2024-10-17/README.md @@ -20,7 +20,7 @@ - 问题描述:行人重识别模型推理速度慢,占推理总流程时间的90%以上,需要再优化一下,导致视频流严重卡顿![alt text](image/image.png) - 问题原因:通过打印fast-reid推理用时,当batch_size为4时,用时约为6ms,由于yolo一次性会检测8张图片,同一张图片里面有非常多的框,所以fast-reid推理总用时较长 - 解决方案: - 1. 增大fast-reid模型的batch_size为8时,视频流卡顿现象明显缓解 + 1. 增大fast-reid模型的batch_size为8时,视频流卡顿现象明显缓解 ### 2.3 待办事项 #### 重识别逻辑 1. 检测到人之后