diff --git a/Docs/2024-10-25/.idea/.gitignore b/Docs/2024-10-25/.idea/.gitignore
new file mode 100644
index 0000000..13566b8
--- /dev/null
+++ b/Docs/2024-10-25/.idea/.gitignore
@@ -0,0 +1,8 @@
+# Default ignored files
+/shelf/
+/workspace.xml
+# Editor-based HTTP Client requests
+/httpRequests/
+# Datasource local storage ignored files
+/dataSources/
+/dataSources.local.xml
diff --git a/Docs/2024-10-25/.idea/inspectionProfiles/Project_Default.xml b/Docs/2024-10-25/.idea/inspectionProfiles/Project_Default.xml
new file mode 100644
index 0000000..60b99ca
--- /dev/null
+++ b/Docs/2024-10-25/.idea/inspectionProfiles/Project_Default.xml
@@ -0,0 +1,24 @@
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/Docs/2024-10-25/.idea/inspectionProfiles/profiles_settings.xml b/Docs/2024-10-25/.idea/inspectionProfiles/profiles_settings.xml
new file mode 100644
index 0000000..105ce2d
--- /dev/null
+++ b/Docs/2024-10-25/.idea/inspectionProfiles/profiles_settings.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/Docs/2024-10-25/.idea/misc.xml b/Docs/2024-10-25/.idea/misc.xml
new file mode 100644
index 0000000..812ab5a
--- /dev/null
+++ b/Docs/2024-10-25/.idea/misc.xml
@@ -0,0 +1,7 @@
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/Docs/2024-10-25/.idea/modules.xml b/Docs/2024-10-25/.idea/modules.xml
new file mode 100644
index 0000000..46d6cef
--- /dev/null
+++ b/Docs/2024-10-25/.idea/modules.xml
@@ -0,0 +1,8 @@
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/Docs/2024-10-25/.idea/vcs.xml b/Docs/2024-10-25/.idea/vcs.xml
new file mode 100644
index 0000000..b2bdec2
--- /dev/null
+++ b/Docs/2024-10-25/.idea/vcs.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/Docs/2024-11-15/2024CVPRPaper.md b/Docs/2024-11-15/2024CVPRPaper.md
new file mode 100644
index 0000000..4a98881
--- /dev/null
+++ b/Docs/2024-11-15/2024CVPRPaper.md
@@ -0,0 +1,805 @@
+# CVPR2024|底层视觉相关论文汇总
+CVPR2024底层视觉(Low-Level Vision)相关的论文和代码,包括超分辨率,图像去雨,图像去雾,去模糊,去噪,图像恢复,图像增强,图像去摩尔纹,图像修复,图像质量评价,插帧,图像/视频压缩等任务,具体如下。
+
+ https://zhuanlan.zhihu.com/p/684196283
+
+ CVPR2024官网:https://cvpr.thecvf.com/Conferences/2024
+
+ CVPR接收论文列表:https://cvpr.thecvf.com/Conferences/2024/AcceptedPapers
+
+ CVPR完整论文库:https://openaccess.thecvf.com/CVPR2024
+
+ 开会时间:2024年6月17日-6月21日
+ 论文接收公布时间:2024年2月27日
+
+# 相关方法概览
+ 1.超分辨率(Super-Resolution)
+ 2.图像去雨(Image Deraining)
+ 3.图像去雾(Image Dehazing)
+ 4.去模糊(Deblurring)
+ 5.去噪(Denoising)
+ 6.图像恢复(Image Restoration)
+ 7.图像增强(Image Enhancement)
+ 8.图像修复(Inpainting)
+ 9.高动态范围成像(HDR Imaging)
+ 10.图像质量评价(Image Quality Assessment)
+ 11.插帧(Frame Interpolation)
+ 12.视频/图像压缩(Video/Image Compression)
+ 13.压缩图像质量增强(Compressed Image Quality Enhancement)
+ 14.图像去反光(Image Reflection Removal)
+ 15.图像去阴影(Image Shadow Removal)
+ 16.图像上色(Image Colorization)
+ 17.图像和谐化(Image Harmonization)
+ 18.视频稳相(Video Stabilization)
+ 19.图像融合(Image Fusion)
+ 20.其他任务(Others)
+
+## 1.超分辨率(Super-Resolution)
+**AdaBM: On-the-Fly Adaptive Bit Mapping for Image Super-Resolution**
+* Paper: https://arxiv.org/abs/2404.03296
+* Code: https://github.com/Cheeun/AdaBM
+
+**A Dynamic Kernel Prior Model for Unsupervised Blind Image Super-Resolution**
+* Paper: https://arxiv.org/abs/2404.15620
+* Code: https://github.com/XYLGroup/DKP
+
+**APISR: Anime Production Inspired Real-World Anime Super-Resolution**
+* Paper: https://arxiv.org/abs/2403.01598
+* Code: https://github.com/Kiteretsu77/APISR
+
+**Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder**
+* Paper: https://arxiv.org/abs/2403.10255v1
+* Code: https://github.com/zhenshij/arbitrary-scale-diffusion
+
+**Beyond Image Super-Resolution for Image Recognition with Task-Driven Perceptual Loss**
+* Paper: https://arxiv.org/abs/2404.01692
+* Code: https://github.com/JaehaKim97/SR4IR
+
+**Bilateral Event Mining and Complementary for Event Stream Super-Resolution**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Huang_Bilateral_Event_Mining_and_Complementary_for_Event_Stream_Super-Resolution_CVPR_2024_paper.html
+* Code: https://github.com/Lqm26/BMCNet-ESR
+
+**Boosting Flow-based Generative Super-Resolution Models via Learned Prior**
+* Paper: https://arxiv.org/abs/2403.10988
+* Code: https://github.com/liyuantsao/FlowSR-LP
+
+**Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model**
+* Paper: https://arxiv.org/abs/2403.17460
+* Code: https://github.com/dongrunmin/RefDiff
+
+**CAMixerSR: Only Details Need More “Attention”**
+* Paper: https://arxiv.org/abs/2402.19289
+* Code: https://github.com/icandle/CAMixerSR
+
+**CFAT: Unleashing Triangular Windows for Image Super-resolution**
+* Paper: https://arxiv.org/abs/2403.16143
+* Code: https://github.com/rayabhisek123/CFAT
+
+**Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image Super-Resolution in Real World**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Fu_Continuous_Optical_Zooming_A_Benchmark_for_Arbitrary-Scale_Image_Super-Resolution_in_CVPR_2024_paper.html
+* Code: https://github.com/pf0607/COZ
+
+**CoSeR: Bridging Image and Language for Cognitive Super-Resolution**
+* Paper: https://arxiv.org/abs/2311.16512
+* Code: https://github.com/VINHYU/CoSeR
+
+**CDFormer: When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution**
+* Paper: https://arxiv.org/abs/2405.07648
+* Code: https://github.com/I2-Multimedia-Lab/CDFormer
+
+**CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data**
+* Paper: https://arxiv.org/abs/2404.04878
+* Code:
+
+**Diffusion-based Blind Text Image Super-Resolution**
+* Paper: https://arxiv.org/abs/2312.08886
+* Code: https://github.com/YuzheZhang-1999/DiffTSR
+
+**DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF**
+* Paper: https://arxiv.org/abs/2404.00874
+* Code:
+
+**Image Processing GNN: Breaking Rigidity in Super-Resolution**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Tian_Image_Processing_GNN_Breaking_Rigidity_in_Super-Resolution_CVPR_2024_paper.html
+* Code: https://github.com/huawei-noah/Efficient-Computing/tree/master/LowLevel/IPG
+
+**Latent Modulated Function for Computational Optimal Continuous Image Representation**
+* Paper: https://arxiv.org/abs/2404.16451
+* Code: https://github.com/HeZongyao/LMF
+
+**Learning Coupled Dictionaries from Unpaired Data for Image Super-Resolution**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Learning_Coupled_Dictionaries_from_Unpaired_Data_for_Image_Super-Resolution_CVPR_2024_paper.html
+* Code:
+
+**Learning Large-Factor EM Image Super-Resolution with Generative Priors**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shou_Learning_Large-Factor_EM_Image_Super-Resolution_with_Generative_Priors_CVPR_2024_paper.html
+* Code: https://github.com/jtshou/GPEMSR
+
+**Low-Res Leads the Way: Improving Generalization for Super-Resolution by Self-Supervised Learning**
+* Paper: https://arxiv.org/abs/2403.02601
+* Code: https://github.com/haoyuc/LWay
+
+**Navigating Beyond Dropout: An Intriguing Solution towards Generalizable Image Super-Resolution**
+* Paper: https://arxiv.org/abs/2402.18929v2
+* Code: https://github.com/Dreamzz5/Simple-Align
+
+**Neural Super-Resolution for Real-time Rendering with Radiance Demodulation**
+* Paper: https://arxiv.org/abs/2308.06699
+* Code: https://github.com/Riga2/NSRD
+
+**Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution**
+* Paper: https://arxiv.org/abs/2404.04785
+* Code: https://github.com/GuangYuanKK/DiffMSR
+
+**SeD: Semantic-Aware Discriminator for Image Super-Resolution**
+* Paper: https://arxiv.org/abs/2402.19387
+* Code: https://github.com/lbc12345/SeD
+
+**SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution**
+* Paper: https://arxiv.org/abs/2311.16518
+* Code: https://github.com/cswry/SeeSR
+
+**Self-Adaptive Reality-Guided Diffusion for Artifact-Free Super-Resolution**
+* Paper: https://arxiv.org/abs/2403.16643
+* Code: https://github.com/ProAirVerse/Self-Adaptive-Guidance-Diffusion
+
+**SinSR: Diffusion-Based Image Super-Resolution in a Single Step**
+* Paper: https://github.com/wyf0912/SinSR/blob/main/main.pdf
+* Code: https://github.com/wyf0912/SinSR
+
+**Super-Resolution Reconstruction from Bayer-Pattern Spike Streams**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Dong_Super-Resolution_Reconstruction_from_Bayer-Pattern_Spike_Streams_CVPR_2024_paper.html
+* Code: https://github.com/csycdong/CSCSR
+
+**Text-guided Explorable Image Super-resolution**
+* Paper: https://arxiv.org/abs/2403.01124
+* Code:
+
+**Training Generative Image Super-Resolution Models by Wavelet-Domain Losses Enables Better Control of Artifacts**
+* Paper: https://arxiv.org/abs/2402.19215
+* Code: https://github.com/mandalinadagi/wgsr
+
+**Transcending the Limit of Local Window: Advanced Super-Resolution Transformer with Adaptive Token Dictionary**
+* Paper: https://arxiv.org/abs/2401.08209
+* Code: https://github.com/LabShuHangGU/Adaptive-Token-Dictionary
+
+**Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer**
+* Paper: https://arxiv.org/abs/2303.17783
+* Code:
+
+**Universal Robustness via Median Randomized Smoothing for Real-World Super-Resolution**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chaouai_Universal_Robustness_via_Median_Randomized_Smoothing_for_Real-World_Super-Resolution_CVPR_2024_paper.html
+* Code:
+
+### Video Super-Resolution
+**Enhancing Video Super-Resolution via Implicit Resampling-based Alignment**
+* Paper: https://github.com/kai422/IART/blob/main/arxiv.pdf
+* Code: https://github.com/kai422/IART
+
+**FMA-Net: Flow-Guided Dynamic Filtering and Iterative Feature Refinement with Multi-Attention for Joint Video Super-Resolution and Deblurring**
+* Paper: https://arxiv.org/abs/2401.03707
+* Code: https://github.com/KAIST-VICLab/FMA-Net
+
+**Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution**
+* Paper: https://arxiv.org/abs/2403.17000
+* Code:
+
+**Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution**
+* Paper: https://arxiv.org/abs/2312.06640
+* Code: https://github.com/sczhou/Upscale-A-Video
+
+**Video Super-Resolution Transformer with Masked Inter&Intra-Frame Attention**
+* Paper: https://arxiv.org/abs/2401.06312
+* Code: https://github.com/LabShuHangGU/MIA-VSR
+## 2.图像去雨(Image Deraining)
+**Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining**
+* Paper: https://arxiv.org/abs/2404.01547
+* Code: https://github.com/cschenxiang/NeRD-Rain
+## 3.图像去雾(Image Dehazing)
+**A Semi-supervised Nighttime Dehazing Baseline with Spatial-Frequency Aware and Realistic Brightness Constraint**
+* Paper: https://arxiv.org/abs/2403.18548
+* Code: https://github.com/Xiaofeng-life/SFSNiD
+
+**Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing**
+* Paper: https://arxiv.org/abs/2403.01105
+* Code:
+
+**ODCR: Orthogonal Decoupling Contrastive Regularization for Unpaired Image Dehazing**
+* Paper: https://arxiv.org/abs/2404.17825v1
+* Code:
+
+### Video Dehazing
+**Driving-Video Dehazing with Non-Aligned Regularization for Safety Assistance**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Fan_Driving-Video_Dehazing_with_Non-Aligned_Regularization_for_Safety_Assistance_CVPR_2024_paper.html
+* Code:
+
+## 4.去模糊(Deblurring)
+**A Unified Framework for Microscopy Defocus Deblur with Multi-Pyramid Transformer and Contrastive Learning**
+* Paper: https://arxiv.org/abs/2403.02611
+* Code: https://github.com/PieceZhang/MPT-CataBlur
+
+**AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring**
+* Paper: https://github.com/INVOKERer/AdaRevD/blob/master/AdaRevD.pdf
+* Code: https://github.com/INVOKERer/AdaRevD
+
+**Blur2Blur: Blur Conversion for Unsupervised Image Deblurring on Unknown Domains**
+* Paper: https://arxiv.org/abs/2403.16205
+* Code: https://github.com/VinAIResearch/Blur2Blur
+
+**Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Lv_Fourier_Priors-Guided_Diffusion_for_Zero-Shot_Joint_Low-Light_Enhancement_and_Deblurring_CVPR_2024_paper.html
+* Code:
+
+**ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation**
+* Paper:https://arxiv.org/abs/2312.10998
+* Code: https://github.com/plusgood-steven/ID-Blau
+
+**LDP: Language-driven Dual-Pixel Image Defocus Deblurring Network**
+* Paper: https://arxiv.org/abs/2307.09815
+* Code: https://github.com/noxsine/LDP
+
+**Mitigating Motion Blur in Neural Radiance Fields with Events and Frames**
+* Paper: https://rpg.ifi.uzh.ch/docs/CVPR24_Cannici.pdf
+* Code: https://github.com/uzh-rpg/EvDeblurNeRF
+
+**Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring**
+* Paper: https://arxiv.org/abs/2404.13153
+* Code: https://github.com/ChengxuLiu/MISCFilter
+
+**Motion Blur Decomposition with Cross-shutter Guidance**
+* Paper: https://arxiv.org/abs/2404.01120
+* Code: https://github.com/jixiang2016/dualBR
+
+**Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization**
+* Paper: https://arxiv.org/abs/2404.12168
+* Code:
+
+**Spike-guided Motion Deblurring with Unknown Modal Spatiotemporal Alignment**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper.html
+* Code: https://github.com/Leozhangjiyuan/UaSDN
+
+**Unsupervised Blind Image Deblurring Based on Self-Enhancement**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Unsupervised_Blind_Image_Deblurring_Based_on_Self-Enhancement_CVPR_2024_paper.html
+* Code:
+
+### Video Deblurring
+**Blur-aware Spatio-temporal Sparse Transformer for Video Deblurring**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Blur-aware_Spatio-temporal_Sparse_Transformer_for_Video_Deblurring_CVPR_2024_paper.html
+* Code: https://github.com/huicongzhang/BSSTNet
+
+**EVS-assisted Joint Deblurring Rolling-Shutter Correction and Video Frame Interpolation through Sensor Inverse Modeling**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Jiang_EVS-assisted_Joint_Deblurring_Rolling-Shutter_Correction_and_Video_Frame_Interpolation_through_CVPR_2024_paper.html
+* Code:
+
+**Frequency-aware Event-based Video Deblurring for Real-World Motion Blur**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Kim_Frequency-aware_Event-based_Video_Deblurring_for_Real-World_Motion_Blur_CVPR_2024_paper.html
+* Code:
+
+**Latency Correction for Event-guided Deblurring and Frame Interpolation**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Yang_Latency_Correction_for_Event-guided_Deblurring_and_Frame_Interpolation_CVPR_2024_paper.html
+****Code:
+
+## 5.去噪(Denoising)
+**LAN: Learning to Adapt Noise for Image Denoising**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Kim_LAN_Learning_to_Adapt_Noise_for_Image_Denoising_CVPR_2024_paper.html
+* Code:
+
+**LED: A Large-scale Real-world Paired Dataset for Event Camera Denoising**
+* Paper: https://arxiv.org/abs/2405.19718
+* Code:
+
+**Robust Image Denoising through Adversarial Frequency Mixup**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ryou_Robust_Image_Denoising_through_Adversarial_Frequency_Mixup_CVPR_2024_paper.html
+* Code: https://github.com/dhryougit/AFM
+
+**Real-World Mobile Image Denoising Dataset with Efficient Baselines**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Flepp_Real-World_Mobile_Image_Denoising_Dataset_with_Efficient_Baselines_CVPR_2024_paper.html
+* Code:
+
+**SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder**
+* Paper: https://arxiv.org/abs/2403.17502
+* Code: https://github.com/zhengdharia/SeNM-VAE
+
+**Transfer CLIP for Generalizable Image Denoising**
+* Paper: https://arxiv.org/abs/2403.15132
+* Code:
+
+**Unmixing Diffusion for Self-Supervised Hyperspectral Image Denoising**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zeng_Unmixing_Diffusion_for_Self-Supervised_Hyperspectral_Image_Denoising_CVPR_2024_paper.html
+* Code:
+
+**ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.html
+* Code: https://github.com/Doyle59217/ZeroIG
+
+## 6.图像恢复(Image Restoration)
+**Adapt or Perish: Adaptive Sparse Transformer with Attentive Feature Refinement for Image Restoration**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhou_Adapt_or_Perish_Adaptive_Sparse_Transformer_with_Attentive_Feature_Refinement_CVPR_2024_paper.html
+* Code: https://github.com/joshyZhou/AST
+
+**Boosting Image Restoration via Priors from Pre-trained Models**
+* Paper: https://arxiv.org/abs/2403.06793
+* Code:
+
+**CoDe: An Explicit Content Decoupling Framework for Image Restoration**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Gu_CoDe_An_Explicit_Content_Decoupling_Framework_for_Image_Restoration_CVPR_2024_paper.html
+* Code:
+
+**Deep Equilibrium Diffusion Restoration with Parallel Sampling**
+* Paper: https://arxiv.org/abs/2311.11600
+* Code: https://github.com/caojiezhang/DeqIR
+
+**Diff-Plugin: Revitalizing Details for Diffusion-based Low-level Tasks**
+* Paper: https://arxiv.org/abs/2403.00644
+* Code: https://github.com/yuhaoliu7456/Diff-Plugin
+
+**Distilling Semantic Priors from SAM to Efficient Image Restoration Models**
+* Paper: https://arxiv.org/abs/2403.16368
+* Code:
+
+**DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks**
+* Paper: https://arxiv.org/abs/2405.04408
+* Code: https://github.com/ZZZHANG-jx/DocRes
+
+**HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models**
+* Paper: https://arxiv.org/abs/2402.15865
+* Code: https://github.com/LiPang/HIRDiff
+
+**Image Restoration by Denoising Diffusion Models With Iteratively Preconditioned Guidance**
+* Paper: https://arxiv.org/abs/2312.16519
+* Code: https://github.com/tirer-lab/DDPG
+
+**Improving Image Restoration through Removing Degradations in Textual Representations**
+* Paper: https://arxiv.org/abs/2312.17334
+* Code: https://github.com/mrluin/TextualDegRemoval
+
+**Learning Degradation-unaware Representation with Prior-based Latent Transformations for Blind Face Restoration**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Xie_Learning_Degradation-unaware_Representation_with_Prior-based_Latent_Transformations_for_Blind_Face_CVPR_2024_paper.html
+* Code:
+
+**Learning Diffusion Texture Priors for Image Restoration**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ye_Learning_Diffusion_Texture_Priors_for_Image_Restoration_CVPR_2024_paper.html
+* Code:
+
+**Look-Up Table Compression for Efficient Image Restoration**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Li_Look-Up_Table_Compression_for_Efficient_Image_Restoration_CVPR_2024_paper.html
+* Code:
+
+**Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration**
+* Paper: https://arxiv.org/abs/2312.02918
+* Code:
+
+**PFStorer: Personalized Face Restoration and Super-Resolution**
+* Paper: https://arxiv.org/abs/2403.08436
+* Code:
+
+**Restoration by Generation with Constrained Priors**
+* Paper: https://arxiv.org/abs/2312.17161
+* Code:
+
+**Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild**
+* Paper: https://arxiv.org/abs/2401.13627
+* Code: https://github.com/Fanghua-Yu/SUPIR
+
+**Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model**
+* Paper: https://arxiv.org/abs/2403.11157
+* Code: https://github.com/iSEE-Laboratory/DiffUIR
+
+**Turb-Seg-Res: A Segment-then-Restore Pipeline for Dynamic Videos with Atmospheric Turbulence**
+* Paper: https://arxiv.org/abs/2404.13605
+Code: https://github.com/Riponcs/Turb-Seg-Res
+
+**WaveFace: Authentic Face Restoration with Efficient Frequency Recovery**
+* Paper: https://arxiv.org/abs/2403.12760
+* Code:
+
+**Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration**
+* Paper: https://arxiv.org/abs/2311.16845
+* Code: https://github.com/zhihefang/wf-diff
+
+## 7.图像增强(Image Enhancement)
+**Color Shift Estimation-and-Correction for Image Enhancement**
+* Paper: https://drive.google.com/file/d/1jZB2rW_I2WLTE5yNA4IZq9wb5p4NNOCR/view
+* Code: https://github.com/yiyulics/CSEC
+
+**Empowering Resampling Operation for Ultra-High-Definition Image Enhancement with Model-Aware Guidance**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Yu_Empowering_Resampling_Operation_for_Ultra-High-Definition_Image_Enhancement_with_Model-Aware_Guidance_CVPR_2024_paper.html
+* Code: https://github.com/YPatrickW/LMAR
+
+**Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Lv_Fourier_Priors-Guided_Diffusion_for_Zero-Shot_Joint_Low-Light_Enhancement_and_Deblurring_CVPR_2024_paper.html
+* Code:
+
+**FlowIE:Efficient Image Enhancement via Rectified Flow**
+* Paper: https://arxiv.org/abs/2406.00508
+* Code: https://github.com/EternalEvan/FlowIE
+
+**Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving**
+* Paper: https://arxiv.org/abs/2404.04804
+* Code: https://github.com/jinlong17/LightDiff
+
+**Robust Depth Enhancement via Polarization Prompt Fusion Tuning**
+* Paper: https://arxiv.org/abs/2404.04318
+* Code: https://github.com/lastbasket/Polarization-Prompt-Fusion-Tuning
+
+**Specularity Factorization for Low Light Enhancement**
+* Paper: https://arxiv.org/abs/2404.01998
+* Code:
+
+**Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach**
+* Paper: https://arxiv.org/abs/2404.00834
+* Code: https://github.com/EthanLiang99/EvLight
+
+**ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.html
+* Code: https://github.com/Doyle59217/ZeroIG
+
+**Zero-Reference Low-Light Enhancement via Physical Quadruple Priors**
+* Paper: https://arxiv.org/abs/2403.12933
+* Code: https://github.com/daooshee/QuadPrior
+
+### Video Enhancement
+**Binarized Low-light Raw Video Enhancement**
+* Paper: https://arxiv.org/abs/2403.19944
+* Code: https://github.com/zhanggengchen/BRVE
+
+**UVEB: A Large-scale Benchmark and Baseline Towards Real-World Underwater Video Enhancement**
+* Paper: https://arxiv.org/abs/2404.14542
+* Code: https://github.com/yzbouc/UVEB
+
+## 8.图像修复(Inpainting)
+**Amodal Completion via Progressive Mixed Context Diffusion**
+* Paper: https://arxiv.org/abs/2312.15540
+* Code: https://github.com/k8xu/amodal
+
+**Brush2Prompt: Contextual Prompt Generator for Object Inpainting**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper.html
+* Code:
+
+**Don’t Look into the Dark: Latent Codes for Pluralistic Image Inpainting**
+* Paper: https://arxiv.org/abs/2403.18186
+* Code:
+
+**Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting**
+* Paper: https://arxiv.org/abs/2403.19898
+* Code: https://github.com/htyjers/StrDiffusion
+
+### Video Inpainting
+**AVID: Any-Length Video Inpainting with Diffusion Model**
+* Paper: https://arxiv.org/abs/2312.03816
+* Code: https://github.com/zhang-zx/AVID
+
+**Towards Language-Driven Video Inpainting via Multimodal Large Language Models**
+* Paper: https://arxiv.org/abs/2401.10226
+* Code: https://github.com/jianzongwu/Language-Driven-Video-Inpainting
+
+## 9.高动态范围成像(HDR Imaging)
+**CLIPtone: Unsupervised Learning for Text-based Image Tone Adjustment**
+* Paper: https://arxiv.org/abs/2404.01123
+* Code: https://github.com/hmin970922/CLIPtone/
+
+**Deep Video Inverse Tone Mapping Based on Temporal Clues**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ye_Deep_Video_Inverse_Tone_Mapping_Based_on_Temporal_Clues_CVPR_2024_paper.html
+* Code: https://github.com/ye3why/VITM-TC
+
+**Generating Content for HDR Deghosting from Frequency View**
+* Paper: https://arxiv.org/abs/2404.00849
+* Code:
+
+**HDRFlow: Real-Time HDR Video Reconstruction with Large Motions**
+* Paper: https://arxiv.org/abs/2403.03447
+* Code: https://github.com/OpenImagingLab/HDRFlow
+
+**Perceptual Assessment and Optimization of HDR Image Rendering**
+* Paper: https://arxiv.org/abs/2310.12877v4
+* Code: https://github.com/cpb68/HDRQA/
+
+**Towards HDR and HFR Video from Rolling-Mixed-Bit Spikings**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chang_Towards_HDR_and_HFR_Video_from_Rolling-Mixed-Bit_Spikings_CVPR_2024_paper.html
+* Code:
+
+**Towards Real-World HDR Video Reconstruction: A Large-Scale Benchmark Dataset and A Two-Stage Alignment Network**
+* Paper: https://arxiv.org/abs/2405.00244
+* Code: https://github.com/yungsyu99/Real-HDRV
+
+**Zero-Shot Structure-Preserving Diffusion Model for High Dynamic Range Tone Mapping**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhu_Zero-Shot_Structure-Preserving_Diffusion_Model_for_High_Dynamic_Range_Tone_Mapping_CVPR_2024_paper.html
+* Code:
+
+## 10.图像质量评价(Image Quality Assessment)
+**Blind Image Quality Assessment Based on Geometric Order Learning**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shin_Blind_Image_Quality_Assessment_Based_on_Geometric_Order_Learning_CVPR_2024_paper.html
+* Code: https://github.com/nhshin-mcl/QCN
+
+**Boosting Image Quality Assessment through Efficient Transformer Adaptation with Local Feature Enhancement**
+* Paper: https://arxiv.org/abs/2308.12001
+* Code:
+
+**Bridging the Synthetic-to-Authentic Gap: Distortion-Guided Unsupervised Domain Adaptation for Blind Image Quality Assessment**
+* Paper: https://arxiv.org/abs/2405.04167
+* Code:
+
+**CLIB-FIQA: Face Image Quality Assessment with Confidence Calibration**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ou_CLIB-FIQA_Face_Image_Quality_Assessment_with_Confidence_Calibration_CVPR_2024_paper.html
+* Code:
+
+**Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment**
+* Paper: https://arxiv.org/abs/2403.10066
+* Code:
+
+**Deep Generative Model based Rate-Distortion for Image Downscaling Assessment**
+* Paper: https://arxiv.org/abs/2403.15139
+* Code: https://github.com/Byronliang8/IDA-RD
+
+**Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization**
+* Paper: https://arxiv.org/abs/2403.11397
+* Code: https://github.com/YangiD/DefenseIQA-NT
+
+**DSL-FIQA: Assessing Facial Image Quality via Dual-Set Degradation Learning and Landmark-Guided Transformer**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.html
+* Code:
+
+**EvalCrafter: Benchmarking and Evaluating Large Video Generation Models**
+* Paper: https://arxiv.org/abs/2310.11440
+* Code: https://github.com/evalcrafter/EvalCrafter
+
+**FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Quality Assessment**
+* Paper: https://arxiv.org/abs/2405.06887
+* Code: https://github.com/PKU-ICST-MIPL/FineParser_CVPR2024
+
+**KVQ: Kwai Video Quality Assessment for Short-form Videos**
+* Paper: https://arxiv.org/abs/2402.07220
+* Code: https://github.com/lixinustc/KVQ-Challenge-CVPR-NTIRE2024
+
+**Learned Scanpaths Aid Blind Panoramic Video Quality Assessment**
+* Paper: https://arxiv.org/abs/2404.00252
+* Code: https://github.com/kalofan/AutoScanpathQA
+
+**Modular Blind Video Quality Assessment**
+* Paper: https://arxiv.org/abs/2402.19276
+* Code: https://github.com/winwinwenwen77/ModularBVQA
+
+**On the Content Bias in Fréchet Video Distance**
+* Paper: https://arxiv.org/abs/2404.12391
+* Code: https://github.com/songweige/content-debiased-fvd
+
+**PTM-VQA: Efficient Video Quality Assessment Leveraging Diverse PreTrained Models from the Wild**
+* Paper: https://arxiv.org/abs/2405.17765
+* Code:
+
+**Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models**
+* Paper: https://arxiv.org/abs/2311.06783
+* Code: https://github.com/Q-Future/Q-Instruct
+
+## 11.插帧(Frame Interpolation)
+**Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images**
+Paper: https://arxiv.org/abs/2404.01464
+Code: https://github.com/jungeun122333/UVI-Net
+
+**IQ-VFI: Implicit Quadratic Motion Estimation for Video Frame Interpolation**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Hu_IQ-VFI_Implicit_Quadratic_Motion_Estimation_for_Video_Frame_Interpolation_CVPR_2024_paper.html
+* Code:
+
+**Perceptual-Oriented Video Frame Interpolation Via Asymmetric Synergistic Blending**
+* Paper: https://arxiv.org/abs/2404.06692
+* Code:
+
+**Sparse Global Matching for Video Frame Interpolation with Large Motion**
+* Paper: https://arxiv.org/abs/2404.06913
+* Code: https://github.com/MCG-NJU/SGM-VFI
+
+**SportsSloMo: A New Benchmark and Baselines for Human-centric Video Frame Interpolation**
+* Paper: https://arxiv.org/abs/2308.16876
+* Code: https://github.com/neu-vi/SportsSloMo
+
+**TTA-EVF: Test-Time Adaptation for Event-based Video Frame Interpolation via Reliable Pixel and Sample Estimation**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Cho_TTA-EVF_Test-Time_Adaptation_for_Event-based_Video_Frame_Interpolation_via_Reliable_CVPR_2024_paper.html
+* Code: https://github.com/Chohoonhee/TTA-EVF
+
+**Video Frame Interpolation via Direct Synthesis with the Event-based Reference**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Video_Frame_Interpolation_via_Direct_Synthesis_with_the_Event-based_Reference_CVPR_2024_paper.html
+* Code:
+
+**Video Interpolation with Diffusion Models**
+* Paper: https://arxiv.org/abs/2404.01203
+* Code:
+
+## 12.视频/图像压缩(Video/Image Compression)
+**C3: High-performance and low-complexity neural compression from a single image or video**
+* Paper: https://arxiv.org/abs/2312.02753
+* Code: https://github.com/google-deepmind/c3_neural_compression
+
+**Generative Latent Coding for Ultra-Low Bitrate Image Compression**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Jia_Generative_Latent_Coding_for_Ultra-Low_Bitrate_Image_Compression_CVPR_2024_paper.html
+* Code:
+
+**Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis**
+* Paper: https://arxiv.org/abs/2403.16258
+* Code:
+
+**Learned Lossless Image Compression based on Bit Plane Slicing**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Learned_Lossless_Image_Compression_based_on_Bit_Plane_Slicing_CVPR_2024_paper.html
+* Code: https://github.com/ZZ022/ArIB-BPS
+
+**Towards Backward-Compatible Continual Learning of Image Compression**
+* Paper: https://arxiv.org/abs/2402.18862
+* Code: https://gitlab.com/viper-purdue/continual-compression
+
+### Video Compression
+**Task-Aware Encoder Control for Deep Video Compression**
+* Paper: https://arxiv.org/abs/2404.04848
+* Code:
+
+**Low-Latency Neural Stereo Streaming**
+* Paper: https://arxiv.org/abs/2403.17879
+* Code:
+
+**Neural Video Compression with Feature Modulation**
+* Paper: https://arxiv.org/abs/2402.17414
+* Code: https://github.com/microsoft/DCVC
+
+## 13.压缩图像质量增强(Compressed Image Quality Enhancement)
+**CPGA: Coding Priors-Guided Aggregation Network for Compressed Video Quality Enhancement**
+* Paper: https://arxiv.org/abs/2403.10362
+* Code:
+
+**Enhancing Quality of Compressed Images by Mitigating Enhancement Bias Towards Compression Domain**
+* Paper: https://arxiv.org/abs/2402.17200
+* Code:
+
+## 14.图像去反光(Image Reflection Removal)
+**Language-guided Image Reflection Separation**
+* Paper: https://arxiv.org/abs/2402.11874
+* Code:
+
+**Revisiting Singlelmage Reflection Removal in the Wild**
+* Paper: https://arxiv.org/abs/2311.17320
+* Code: https://github.com/zhuyr97/Reflection_RemoVal_CVPR2024
+
+## 15.图像去阴影(Image Shadow Removal)
+**HomoFormer: Homogenized Transformer for Image Shadow Removal**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper.html
+* Code: https://github.com/jiexiaou/HomoFormer
+
+## 16.图像上色(Image Colorization)
+**Automatic Controllable Colorization by Imagination**
+* Paper: https://arxiv.org/abs/2404.05661
+* Code: https://github.com/xy-cong/imagine-colorization
+
+**Generative Quanta Color Imaging**
+* Paper: https://arxiv.org/abs/2403.19066
+* Code:
+
+**Learning Inclusion Matching for Animation Paint Bucket Colorization**
+* Paper: https://arxiv.org/abs/2403.18342
+* Code: https://github.com/ykdai/BasicPBC
+
+## 17.图像和谐化(Image Harmonization)
+**Relightful Harmonization: Lighting-aware Portrait Background Replacement**
+* Paper: https://arxiv.org/abs/2312.06886
+* Code:
+
+**Video Harmonization with Triplet Spatio-Temporal Variation Patterns**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Guo_Video_Harmonization_with_Triplet_Spatio-Temporal_Variation_Patterns_CVPR_2024_paper.html
+* Code: https://github.com/zhenglab/VideoTripletTransformer
+## 18.视频稳相(Video Stabilization)
+**3D Multi-frame Fusion for Video Stabilization**
+* Paper: https://arxiv.org/abs/2404.12887
+* Code:
+
+**Harnessing Meta-Learning for Improving Full-Frame Video Stabilization**
+* Paper: https://arxiv.org/abs/2403.03662
+* Code: https://github.com/MKashifAli/MetaVideoStab
+
+## 19.图像融合(Image Fusion)
+**Equivariant Multi-Modality Image Fusion**
+* Paper: https://arxiv.org/abs/2305.11443
+* Code: https://github.com/Zhaozixiang1228/MMIF-EMMA
+
+**MRFS: Mutually Reinforcing Image Fusion and Segmentation**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_MRFS_Mutually_Reinforcing_Image_Fusion_and_Segmentation_CVPR_2024_paper.html
+* Code: https://github.com/HaoZhang1018/MRFS
+
+**Neural Spline Fields for Burst Image Fusion and Layer Separation**
+* Paper: https://arxiv.org/abs/2312.14235
+* Code: https://github.com/princeton-computational-imaging/NSF
+
+**Probing Synergistic High-Order Interaction in Infrared and Visible Image Fusion**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Probing_Synergistic_High-Order_Interaction_in_Infrared_and_Visible_Image_Fusion_CVPR_2024_paper.html
+* Code:
+
+**Revisiting Spatial-Frequency Information Integration from a Hierarchical Perspective for Panchromatic and Multi-Spectral Image Fusion**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Probing_Synergistic_High-Order_Interaction_in_Infrared_and_Visible_Image_Fusion_CVPR_2024_paper.html
+* Code:
+
+**Text-IF: Leveraging Semantic Text Guidance for Degradation-Aware and Interactive Image Fusion**
+* Paper: https://arxiv.org/abs/2403.16387
+* Code: https://github.com/XunpengYi/Text-IF
+
+**Task-Customized Mixture of Adapters for General Image Fusion**
+* Paper: https://arxiv.org/abs/2403.12494
+* Code: https://github.com/YangSun22/TC-MoA
+
+## 20.其他任务(Others)
+**Close Imitation of Expert Retouching for Black-and-White Photography**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shin_Close_Imitation_of_Expert_Retouching_for_Black-and-White_Photography_CVPR_2024_paper.html
+* Code: https://github.com/seunghyuns98/Decolorization
+
+**Content-Adaptive Non-Local Convolution for Remote Sensing Pansharpening**
+Paper: https://arxiv.org/abs/2404.07543
+Code: https://github.com/Duanyll/CANConv
+
+**DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral Diffusion Model**
+* Paper: https://arxiv.org/abs/2311.11417
+* Code: https://github.com/PAN083/DiffSCI
+
+**Dual Prior Unfolding for Snapshot Compressive Imaging**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Dual_Prior_Unfolding_for_Snapshot_Compressive_Imaging_CVPR_2024_paper.html
+* Code: https://github.com/ZhangJC-2k/DPU
+
+**Dual-Camera Smooth Zoom on Mobile Phones**
+* Paper: https://arxiv.org/abs/2404.04908
+* Code: https://github.com/ZcsrenlongZ/ZoomGS
+
+**Dual-scale Transformer for Large-scale Single-Pixel Imaging**
+* Paper: https://arxiv.org/abs/2404.05001
+* Code: https://github.com/Gang-Qu/HATNet-SPI
+
+**Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for Video Adverse Weather Removal**
+* Paper: https://arxiv.org/abs/2403.07684
+* Code: https://github.com/scott-yjyang/DiffTTA
+
+**Language-driven All-in-one Adverse Weather Removal**
+* Paper: https://arxiv.org/abs/2312.01381
+* Code:
+
+**Learning to Remove Wrinkled Transparent Film with Polarized Prior**
+* Paper: https://arxiv.org/abs/2403.04368
+* Code: https://github.com/jqtangust/FilmRemovalww
+
+**Misalignment-Robust Frequency Distribution Loss for Image Transformation**
+* Paper: https://arxiv.org/abs/2402.18192
+* Code: https://github.com/eezkni/FDL
+
+**On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation**
+* Paper: https://arxiv.org/abs/2404.08540
+* Code: https://github.com/agneet42/lang_depth
+
+**ParamISP: Learned Forward and Inverse ISPs using Camera Parameters**
+* Paper: https://arxiv.org/abs/2312.13313
+* Code: https://github.com/woo525/ParamISP
+
+**RecDiffusion: Rectangling for Image Stitching with Diffusion Models**
+* Paper: https://arxiv.org/abs/2402.18192
+* Code: https://github.com/lhaippp/RecDiffusion
+
+**Residual Denoising Diffusion Models**
+* Paper: https://arxiv.org/abs/2308.13712
+* Code: https://github.com/nachifur/RDDM
+
+**Real-Time Exposure Correction via Collaborative Transformations and Adaptive Sampling**
+* Paper: https://arxiv.org/abs/2404.11884
+* Code: https://github.com/HUST-IAL/CoTF
+
+**SCINeRF: Neural Radiance Fields from a Snapshot Compressive Image**
+* Paper: https://arxiv.org/abs/2403.20018
+* Code: https://github.com/WU-CVGL/SCINeRF
+
+**Seeing Motion at Nighttime with an Event Camera**
+* Paper: https://arxiv.org/abs/2404.11884
+* Code: https://github.com/Liu-haoyue/NER-Net
+
+**Shadow Generation for Composite Image Using Diffusion Model**
+* Paper: https://arxiv.org/abs/2403.15234
+* Code: https://github.com/bcmi/Object-Shadow-Generation-Dataset-DESOBAv2
+
+**Improving Spectral Snapshot Reconstruction with Spectral-Spatial Rectification**
+* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Improving_Spectral_Snapshot_Reconstruction_with_Spectral-Spatial_Rectification_CVPR_2024_paper.html
+* Code: https://github.com/ZhangJC-2k/SSR
+
+## 参考
+相关Low-Level-Vision整理
+Awesome-CVPR2020-Low-Level-Vision
+Awesome-ECCV2020-Low-Level-Vision
+Awesome-Low-Level-Vision-Research-Groups
+Awesome-AIGC-Research-Groups
diff --git a/Docs/2024-11-15/report_1115.md b/Docs/2024-11-15/report_1115.md
new file mode 100644
index 0000000..889ed3a
--- /dev/null
+++ b/Docs/2024-11-15/report_1115.md
@@ -0,0 +1,40 @@
+# 2024-11-15感知智能组会汇报
+# 一、近期工作
+ **Image Generation** vs **Image Reconstruction**
+ * **Image Generation**:指通过算法从零开始生成新的图像,通常基于一些输入条件(如文本描述、特定样式、语义信息)或随机噪声(如生成对抗网络的输入)。目的是创造出逼真的、具有特定特征的图像。
+ * **无条件生成**是指无条件地从数据集中生成样本,即:$p(y)$;
+ * **条件图像生成**(子任务)是指根据标签有条件地从数据集中生成样本,即:$p(y|x)$
+ * **Image Reconstruction**:指从已有的、可能损坏、不完整或压缩的图像数据中恢复原始图像,或者从观测数据中重建图像。目标是尽可能还原出真实图像。
+
+| **特性** | 图像生成 (Image Generation) | 图像重建 (Image Reconstruction) |
+|--------|------|--------|
+| **输入** | 随机噪声、文本或条件标签等 | 受损图像、不完整数据(如低分辨率图像、部分丢失的像素、模糊图像) |
+| **输出** | 全新的图像,可能是艺术性的、合成的或逼真的 | 修复后的图像,接近原始清晰图像 |
+| **目标** | 目标是创造性地生成新图像,关注生成图像的多样性和真实性;注重图像的视觉质量、逼真度以及与输入条件的匹配度。 | 目标是恢复或重建图像,尽可能减少噪声、模糊和失真;注重恢复的准确性和保真度,强调与真实图像的接近程度。 |
+| **技术方法** | 典型方法包括生成对抗网络(GANs)、变分自编码器(VAEs)、扩散模型、条件生成模型等 | 通常基于优化和重建技术,包括卷积神经网络(CNNs)、自编码器(Autoencoders)、逆问题求解方法(如去噪、自适应插值)、正则化技术等 |
+| **应用场景** | 数字艺术与内容创作(如DALL·E、Stable Diffusion)、数据增强(为训练AI生成多样化样本)、虚拟世界构建(如游戏、元宇宙)、图像翻译(风格迁移、照片转漫画) | 医学成像(如CT/MRI图像修复)、摄影中的图像去噪、超分辨率重建、遥感影像处理(如卫星图像云层去除)、逆向工程(如压缩图片的质量恢复) |
+
+图像生成更侧重创新性,图像重建更注重还原性,但两者都在提升图像质量和智能处理方面发挥着重要作用。
+
+我们所希望做的特征还原/图像补全/遮挡还原更倾向于**Image Reconstruction**部分的内容,但可以同时借鉴Generation和Reconstruction两个部分的内容展开。
+* 从**Image Generation**的角度:关注补全的多样性和合理性
+ * 全局理解:
+ * MAE需要通过观察未遮挡部分来推测被遮挡区域的内容,这需要全局上下文信息的支持,与图像生成中的全局一致性思路相似。
+ * 补全结果不仅要像原图,还需要自然、符合上下文逻辑。
+ * 潜在表征学习:
+ * MAE利用自监督学习,类似生成任务中的生成网络,通过学习隐藏空间(latent space)中的表征来预测缺失区域的可能内容。
+ * 去噪补全:
+ * 与扩散模型类似,MAE可以从不确定性的潜在空间中逐步补全遮挡区域。
+* 从**Image Reconstruction**的角度:注重还原真实性
+ * 输入部分:
+ * MAE的输入是遮挡了部分像素的图像,这与图像重建任务中不完整图像作为输入相似。
+ * 模型需要从局部上下文信息中恢复被遮挡的区域,这与图像重建强调从不完整数据中提取有用信息的思路一致。
+ * 目标:
+ * 恢复缺失的像素,使得补全后的图像尽可能接近原始图像,注重重建的保真度。
+ * MAE的设计目标是通过有效的编码和解码过程,使模型学会图像的局部与整体关系。
+
+为了实现我们想要的部分,最好是找reconstruction领域去finetune的合理方法以及在generation领域的创新模块表示。除此之外,在segmentation领域找到优化的方案。
+
+
+# 二、未来规划
+阅读《Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting》以及所总结的和自己相关方向的论文
\ No newline at end of file
diff --git a/Docs/2024-11-22/Structure_Matters:_Tackling_the_Semantic_Discrepancy_in_Diffusion_Models_for_Image_Inpainting.md b/Docs/2024-11-22/Structure_Matters:_Tackling_the_Semantic_Discrepancy_in_Diffusion_Models_for_Image_Inpainting.md
new file mode 100644
index 0000000..8d5309b
--- /dev/null
+++ b/Docs/2024-11-22/Structure_Matters:_Tackling_the_Semantic_Discrepancy_in_Diffusion_Models_for_Image_Inpainting.md
@@ -0,0 +1,26 @@
+# Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting
+* Paper Link:https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Structure_Matters_Tackling_the_Semantic_Discrepancy_in_Diffusion_Models_for_CVPR_2024_paper.pdf
+* Code Link:https://github.com/htyjers/StrDiffusion
+
+## Abstract
+图像修复中的去噪扩散概率模型(DDPMs)旨在正向修复过程中向图像纹理中添加噪声,反向修复过程中利用纹理未被掩盖区域恢复被掩盖区域去噪过程。尽管进行了有意义的语义生成,但现有的方法存在被屏蔽和未屏蔽区域之间的语义差异,因为语义密集的未屏蔽纹理在扩散过程中没有被完全退化,而被屏蔽区域在扩散过程中变成了纯噪声,导致它们之间存在较大的差异。本文旨在回答未掩码语义如何指导纹理去噪过程;以及如何解决语义差异,以促进一致和有意义的语义生成。为此,本文提出了一种基于结构引导的图像修复扩散模型StrDiffusion,该模型在结构指导下对传统的纹理去噪过程进行重新表述,从而得到一个简化的图像修复去噪目标,同时揭示了:
+* 语义稀疏的结构有利于早期解决语义差异问题,而稠密的纹理则能在后期生成合理的语义;
+* 得益于结构语义的时变稀疏性,未掩盖区域的语义本质上为纹理去噪过程提供了时变结构指导。在去噪过程中,通过利用掩码区域和未掩码区域之间的去噪结构的一致性,训练一个结构引导的神经网络来估计简化的去噪目标。
+* 此外,设计了一种自适应重采样策略,作为结构是否能够指导纹理去噪过程的形式化标准,同时调节其语义相关性。通过大量实验验证了StrDiffusion算法相对于现有算法的优点。
+## 1.Introduction
+最近,图像修复支持了广泛的应用,例如照片恢复和图像编辑,其目的是用未掩蔽区域的语义信息恢复图像的掩蔽区域,其原理主要涵盖两个方面:掩蔽区域的合理语义及其与未掩蔽区域语义的一致性。现有的工作主要涉及基于扩散的[2,8]和基于补丁的[1,4,10]方案,该方案倾向于通过简单的颜色信息输入图像的小掩模或重复图案,而无法处理不规则或复杂的掩模。为了解决这个问题,大量的注意力[15,17,31,36]已经转移到卷积神经网络(CNN)上,它致力于在掩码区域周围对局部语义进行编码,而忽略来自未掩码区域的全局信息,导致远离掩码边界的区域保持毛茸。最近,自我注意机制[5,14,16,32,35]被提出以分割图像块的形式将掩蔽区域与未掩蔽区域全局关联,增强了它们之间的语义一致性。然而,这种策略在掩蔽区域内不同斑块之间的语义相关性较差。为此,利用语义稀疏结构[3,7,9,13,18,20,27,28,33,34]来增强它们的相关性,然而,这意味着严重依赖结构和纹理之间的语义一致性,因此不可避免地在内嵌输出中带有伪影。
+
+幸运的是,去噪扩散概率模型(DDPM)[12,25]已成为强大的生成模型,在语义生成和模式收敛方面取得了显著进展,从而很好地弥补了图像修复语义生成不佳的问题[22,23,29,38]。具体来说,[22]建议采用预训练的DDPM作为先验,而不是专注于训练过程,并开发一种重采样策略来调节推理过程中的反向去噪过程。此外,[23]试图通过利用未掩蔽区域的语义来模拟图像修复的扩散过程,从而为去噪过程提供最佳的反向解决方案。这些方法大多表现出具有DDPM优势的语义有意义的修复结果,而忽略了掩蔽和未掩蔽区域之间的语义一致性。直觉是,语义密集的无掩模纹理退化为无掩模结构和高斯噪声的组合,而掩模区域在扩散过程中变成了纯噪声,导致它们之间存在很大差异(见图1(a)和图2(a)),并引发了以下问题:
+* 1)*无掩模语义如何指导图像修复的纹理去噪过程?*我们的激励实验建议,当未掩蔽的语义与噪声相结合变得更稀疏时,例如,利用掩蔽图像的灰度或边缘图作为替代,差异问题在很大程度上得到了缓解,同时,在修复结果中损失了大量的语义信息;见图2(b)(c)。因此,未掩蔽区域随时间变化的不变语义无法很好地指导纹理去噪过程。
+* 2)在 (1) 之后,人们自然会想知道*如何产生具有一致且有意义的语义的去噪结果*。很明显,稀疏结构在早期阶段有利于语义一致性,而密集纹理在去噪过程中倾向于在后期生成有意义的语义,这意味着去噪结果的一致性和合理语义之间的平衡。为了进一步产生理想的结果,我们将结构的引导视为纹理去噪过程的辅助;见图1(B)
+## 2.Structure-Guided Texture Diffusion Models
+
+### 2.1 Preliminaries: Denoising Diffusion Probabilistic Models for Image Inpainting
+
+### 2.2 Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting
+
+#### 2.2.1 Structure Matters: Sparse Semantics benefits the Semantic Consistency
+
+#### 2.2.2 Optimal Solution to the Denoising Process Under the Guidance of the Structure
+
+### 2.3 Structure-Guided Denoising Process: How does the Structure Guide the Texture Denoising Process?
\ No newline at end of file