add new notes

main
杨思洁 2024-11-15 16:44:56 +08:00
parent 5ef8c9bd25
commit 6d48954367
9 changed files with 930 additions and 0 deletions

8
Docs/2024-10-25/.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

View File

@ -0,0 +1,24 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="Eslint" enabled="true" level="WARNING" enabled_by_default="true" />
<inspection_tool class="PyCompatibilityInspection" enabled="true" level="WARNING" enabled_by_default="true">
<option name="ourVersions">
<value>
<list size="2">
<item index="0" class="java.lang.String" itemvalue="2.7" />
<item index="1" class="java.lang.String" itemvalue="3.11" />
</list>
</value>
</option>
</inspection_tool>
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors">
<list>
<option value="N803" />
<option value="N806" />
</list>
</option>
</inspection_tool>
</profile>
</component>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.9" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
</project>

View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/2024-10-25.iml" filepath="$PROJECT_DIR$/.idea/2024-10-25.iml" />
</modules>
</component>
</project>

View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/../.." vcs="Git" />
</component>
</project>

View File

@ -0,0 +1,805 @@
# CVPR2024底层视觉相关论文汇总
CVPR2024底层视觉(Low-Level Vision)相关的论文和代码,包括超分辨率,图像去雨,图像去雾,去模糊,去噪,图像恢复,图像增强,图像去摩尔纹,图像修复,图像质量评价,插帧,图像/视频压缩等任务,具体如下。
https://zhuanlan.zhihu.com/p/684196283
CVPR2024官网https://cvpr.thecvf.com/Conferences/2024
CVPR接收论文列表https://cvpr.thecvf.com/Conferences/2024/AcceptedPapers
CVPR完整论文库https://openaccess.thecvf.com/CVPR2024
开会时间2024年6月17日-6月21日
论文接收公布时间2024年2月27日
# 相关方法概览
1.超分辨率(Super-Resolution)
2.图像去雨(Image Deraining)
3.图像去雾(Image Dehazing)
4.去模糊(Deblurring)
5.去噪(Denoising)
6.图像恢复(Image Restoration)
7.图像增强(Image Enhancement)
8.图像修复(Inpainting)
9.高动态范围成像(HDR Imaging)
10.图像质量评价(Image Quality Assessment)
11.插帧(Frame Interpolation)
12.视频/图像压缩(Video/Image Compression)
13.压缩图像质量增强(Compressed Image Quality Enhancement)
14.图像去反光(Image Reflection Removal)
15.图像去阴影(Image Shadow Removal)
16.图像上色(Image Colorization)
17.图像和谐化(Image Harmonization)
18.视频稳相(Video Stabilization)
19.图像融合(Image Fusion)
20.其他任务(Others)
## 1.超分辨率(Super-Resolution)
**AdaBM: On-the-Fly Adaptive Bit Mapping for Image Super-Resolution**
* Paper: https://arxiv.org/abs/2404.03296
* Code: https://github.com/Cheeun/AdaBM
**A Dynamic Kernel Prior Model for Unsupervised Blind Image Super-Resolution**
* Paper: https://arxiv.org/abs/2404.15620
* Code: https://github.com/XYLGroup/DKP
**APISR: Anime Production Inspired Real-World Anime Super-Resolution**
* Paper: https://arxiv.org/abs/2403.01598
* Code: https://github.com/Kiteretsu77/APISR
**Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder**
* Paper: https://arxiv.org/abs/2403.10255v1
* Code: https://github.com/zhenshij/arbitrary-scale-diffusion
**Beyond Image Super-Resolution for Image Recognition with Task-Driven Perceptual Loss**
* Paper: https://arxiv.org/abs/2404.01692
* Code: https://github.com/JaehaKim97/SR4IR
**Bilateral Event Mining and Complementary for Event Stream Super-Resolution**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Huang_Bilateral_Event_Mining_and_Complementary_for_Event_Stream_Super-Resolution_CVPR_2024_paper.html
* Code: https://github.com/Lqm26/BMCNet-ESR
**Boosting Flow-based Generative Super-Resolution Models via Learned Prior**
* Paper: https://arxiv.org/abs/2403.10988
* Code: https://github.com/liyuantsao/FlowSR-LP
**Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model**
* Paper: https://arxiv.org/abs/2403.17460
* Code: https://github.com/dongrunmin/RefDiff
**CAMixerSR: Only Details Need More “Attention”**
* Paper: https://arxiv.org/abs/2402.19289
* Code: https://github.com/icandle/CAMixerSR
**CFAT: Unleashing Triangular Windows for Image Super-resolution**
* Paper: https://arxiv.org/abs/2403.16143
* Code: https://github.com/rayabhisek123/CFAT
**Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image Super-Resolution in Real World**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Fu_Continuous_Optical_Zooming_A_Benchmark_for_Arbitrary-Scale_Image_Super-Resolution_in_CVPR_2024_paper.html
* Code: https://github.com/pf0607/COZ
**CoSeR: Bridging Image and Language for Cognitive Super-Resolution**
* Paper: https://arxiv.org/abs/2311.16512
* Code: https://github.com/VINHYU/CoSeR
**CDFormer: When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution**
* Paper: https://arxiv.org/abs/2405.07648
* Code: https://github.com/I2-Multimedia-Lab/CDFormer
**CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data**
* Paper: https://arxiv.org/abs/2404.04878
* Code:
**Diffusion-based Blind Text Image Super-Resolution**
* Paper: https://arxiv.org/abs/2312.08886
* Code: https://github.com/YuzheZhang-1999/DiffTSR
**DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF**
* Paper: https://arxiv.org/abs/2404.00874
* Code:
**Image Processing GNN: Breaking Rigidity in Super-Resolution**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Tian_Image_Processing_GNN_Breaking_Rigidity_in_Super-Resolution_CVPR_2024_paper.html
* Code: https://github.com/huawei-noah/Efficient-Computing/tree/master/LowLevel/IPG
**Latent Modulated Function for Computational Optimal Continuous Image Representation**
* Paper: https://arxiv.org/abs/2404.16451
* Code: https://github.com/HeZongyao/LMF
**Learning Coupled Dictionaries from Unpaired Data for Image Super-Resolution**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Learning_Coupled_Dictionaries_from_Unpaired_Data_for_Image_Super-Resolution_CVPR_2024_paper.html
* Code:
**Learning Large-Factor EM Image Super-Resolution with Generative Priors**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shou_Learning_Large-Factor_EM_Image_Super-Resolution_with_Generative_Priors_CVPR_2024_paper.html
* Code: https://github.com/jtshou/GPEMSR
**Low-Res Leads the Way: Improving Generalization for Super-Resolution by Self-Supervised Learning**
* Paper: https://arxiv.org/abs/2403.02601
* Code: https://github.com/haoyuc/LWay
**Navigating Beyond Dropout: An Intriguing Solution towards Generalizable Image Super-Resolution**
* Paper: https://arxiv.org/abs/2402.18929v2
* Code: https://github.com/Dreamzz5/Simple-Align
**Neural Super-Resolution for Real-time Rendering with Radiance Demodulation**
* Paper: https://arxiv.org/abs/2308.06699
* Code: https://github.com/Riga2/NSRD
**Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution**
* Paper: https://arxiv.org/abs/2404.04785
* Code: https://github.com/GuangYuanKK/DiffMSR
**SeD: Semantic-Aware Discriminator for Image Super-Resolution**
* Paper: https://arxiv.org/abs/2402.19387
* Code: https://github.com/lbc12345/SeD
**SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution**
* Paper: https://arxiv.org/abs/2311.16518
* Code: https://github.com/cswry/SeeSR
**Self-Adaptive Reality-Guided Diffusion for Artifact-Free Super-Resolution**
* Paper: https://arxiv.org/abs/2403.16643
* Code: https://github.com/ProAirVerse/Self-Adaptive-Guidance-Diffusion
**SinSR: Diffusion-Based Image Super-Resolution in a Single Step**
* Paper: https://github.com/wyf0912/SinSR/blob/main/main.pdf
* Code: https://github.com/wyf0912/SinSR
**Super-Resolution Reconstruction from Bayer-Pattern Spike Streams**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Dong_Super-Resolution_Reconstruction_from_Bayer-Pattern_Spike_Streams_CVPR_2024_paper.html
* Code: https://github.com/csycdong/CSCSR
**Text-guided Explorable Image Super-resolution**
* Paper: https://arxiv.org/abs/2403.01124
* Code:
**Training Generative Image Super-Resolution Models by Wavelet-Domain Losses Enables Better Control of Artifacts**
* Paper: https://arxiv.org/abs/2402.19215
* Code: https://github.com/mandalinadagi/wgsr
**Transcending the Limit of Local Window: Advanced Super-Resolution Transformer with Adaptive Token Dictionary**
* Paper: https://arxiv.org/abs/2401.08209
* Code: https://github.com/LabShuHangGU/Adaptive-Token-Dictionary
**Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer**
* Paper: https://arxiv.org/abs/2303.17783
* Code:
**Universal Robustness via Median Randomized Smoothing for Real-World Super-Resolution**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chaouai_Universal_Robustness_via_Median_Randomized_Smoothing_for_Real-World_Super-Resolution_CVPR_2024_paper.html
* Code:
### Video Super-Resolution
**Enhancing Video Super-Resolution via Implicit Resampling-based Alignment**
* Paper: https://github.com/kai422/IART/blob/main/arxiv.pdf
* Code: https://github.com/kai422/IART
**FMA-Net: Flow-Guided Dynamic Filtering and Iterative Feature Refinement with Multi-Attention for Joint Video Super-Resolution and Deblurring**
* Paper: https://arxiv.org/abs/2401.03707
* Code: https://github.com/KAIST-VICLab/FMA-Net
**Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution**
* Paper: https://arxiv.org/abs/2403.17000
* Code:
**Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution**
* Paper: https://arxiv.org/abs/2312.06640
* Code: https://github.com/sczhou/Upscale-A-Video
**Video Super-Resolution Transformer with Masked Inter&Intra-Frame Attention**
* Paper: https://arxiv.org/abs/2401.06312
* Code: https://github.com/LabShuHangGU/MIA-VSR
## 2.图像去雨(Image Deraining)
**Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining**
* Paper: https://arxiv.org/abs/2404.01547
* Code: https://github.com/cschenxiang/NeRD-Rain
## 3.图像去雾(Image Dehazing)
**A Semi-supervised Nighttime Dehazing Baseline with Spatial-Frequency Aware and Realistic Brightness Constraint**
* Paper: https://arxiv.org/abs/2403.18548
* Code: https://github.com/Xiaofeng-life/SFSNiD
**Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing**
* Paper: https://arxiv.org/abs/2403.01105
* Code:
**ODCR: Orthogonal Decoupling Contrastive Regularization for Unpaired Image Dehazing**
* Paper: https://arxiv.org/abs/2404.17825v1
* Code:
### Video Dehazing
**Driving-Video Dehazing with Non-Aligned Regularization for Safety Assistance**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Fan_Driving-Video_Dehazing_with_Non-Aligned_Regularization_for_Safety_Assistance_CVPR_2024_paper.html
* Code:
## 4.去模糊(Deblurring)
**A Unified Framework for Microscopy Defocus Deblur with Multi-Pyramid Transformer and Contrastive Learning**
* Paper: https://arxiv.org/abs/2403.02611
* Code: https://github.com/PieceZhang/MPT-CataBlur
**AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring**
* Paper: https://github.com/INVOKERer/AdaRevD/blob/master/AdaRevD.pdf
* Code: https://github.com/INVOKERer/AdaRevD
**Blur2Blur: Blur Conversion for Unsupervised Image Deblurring on Unknown Domains**
* Paper: https://arxiv.org/abs/2403.16205
* Code: https://github.com/VinAIResearch/Blur2Blur
**Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Lv_Fourier_Priors-Guided_Diffusion_for_Zero-Shot_Joint_Low-Light_Enhancement_and_Deblurring_CVPR_2024_paper.html
* Code:
**ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation**
* Paperhttps://arxiv.org/abs/2312.10998
* Code: https://github.com/plusgood-steven/ID-Blau
**LDP: Language-driven Dual-Pixel Image Defocus Deblurring Network**
* Paper: https://arxiv.org/abs/2307.09815
* Code: https://github.com/noxsine/LDP
**Mitigating Motion Blur in Neural Radiance Fields with Events and Frames**
* Paper: https://rpg.ifi.uzh.ch/docs/CVPR24_Cannici.pdf
* Code: https://github.com/uzh-rpg/EvDeblurNeRF
**Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring**
* Paper: https://arxiv.org/abs/2404.13153
* Code: https://github.com/ChengxuLiu/MISCFilter
**Motion Blur Decomposition with Cross-shutter Guidance**
* Paper: https://arxiv.org/abs/2404.01120
* Code: https://github.com/jixiang2016/dualBR
**Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization**
* Paper: https://arxiv.org/abs/2404.12168
* Code:
**Spike-guided Motion Deblurring with Unknown Modal Spatiotemporal Alignment**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper.html
* Code: https://github.com/Leozhangjiyuan/UaSDN
**Unsupervised Blind Image Deblurring Based on Self-Enhancement**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Unsupervised_Blind_Image_Deblurring_Based_on_Self-Enhancement_CVPR_2024_paper.html
* Code:
### Video Deblurring
**Blur-aware Spatio-temporal Sparse Transformer for Video Deblurring**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Blur-aware_Spatio-temporal_Sparse_Transformer_for_Video_Deblurring_CVPR_2024_paper.html
* Code: https://github.com/huicongzhang/BSSTNet
**EVS-assisted Joint Deblurring Rolling-Shutter Correction and Video Frame Interpolation through Sensor Inverse Modeling**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Jiang_EVS-assisted_Joint_Deblurring_Rolling-Shutter_Correction_and_Video_Frame_Interpolation_through_CVPR_2024_paper.html
* Code:
**Frequency-aware Event-based Video Deblurring for Real-World Motion Blur**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Kim_Frequency-aware_Event-based_Video_Deblurring_for_Real-World_Motion_Blur_CVPR_2024_paper.html
* Code:
**Latency Correction for Event-guided Deblurring and Frame Interpolation**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Yang_Latency_Correction_for_Event-guided_Deblurring_and_Frame_Interpolation_CVPR_2024_paper.html
****Code:
## 5.去噪(Denoising)
**LAN: Learning to Adapt Noise for Image Denoising**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Kim_LAN_Learning_to_Adapt_Noise_for_Image_Denoising_CVPR_2024_paper.html
* Code:
**LED: A Large-scale Real-world Paired Dataset for Event Camera Denoising**
* Paper: https://arxiv.org/abs/2405.19718
* Code:
**Robust Image Denoising through Adversarial Frequency Mixup**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ryou_Robust_Image_Denoising_through_Adversarial_Frequency_Mixup_CVPR_2024_paper.html
* Code: https://github.com/dhryougit/AFM
**Real-World Mobile Image Denoising Dataset with Efficient Baselines**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Flepp_Real-World_Mobile_Image_Denoising_Dataset_with_Efficient_Baselines_CVPR_2024_paper.html
* Code:
**SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder**
* Paper: https://arxiv.org/abs/2403.17502
* Code: https://github.com/zhengdharia/SeNM-VAE
**Transfer CLIP for Generalizable Image Denoising**
* Paper: https://arxiv.org/abs/2403.15132
* Code:
**Unmixing Diffusion for Self-Supervised Hyperspectral Image Denoising**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zeng_Unmixing_Diffusion_for_Self-Supervised_Hyperspectral_Image_Denoising_CVPR_2024_paper.html
* Code:
**ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.html
* Code: https://github.com/Doyle59217/ZeroIG
## 6.图像恢复(Image Restoration)
**Adapt or Perish: Adaptive Sparse Transformer with Attentive Feature Refinement for Image Restoration**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhou_Adapt_or_Perish_Adaptive_Sparse_Transformer_with_Attentive_Feature_Refinement_CVPR_2024_paper.html
* Code: https://github.com/joshyZhou/AST
**Boosting Image Restoration via Priors from Pre-trained Models**
* Paper: https://arxiv.org/abs/2403.06793
* Code:
**CoDe: An Explicit Content Decoupling Framework for Image Restoration**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Gu_CoDe_An_Explicit_Content_Decoupling_Framework_for_Image_Restoration_CVPR_2024_paper.html
* Code:
**Deep Equilibrium Diffusion Restoration with Parallel Sampling**
* Paper: https://arxiv.org/abs/2311.11600
* Code: https://github.com/caojiezhang/DeqIR
**Diff-Plugin: Revitalizing Details for Diffusion-based Low-level Tasks**
* Paper: https://arxiv.org/abs/2403.00644
* Code: https://github.com/yuhaoliu7456/Diff-Plugin
**Distilling Semantic Priors from SAM to Efficient Image Restoration Models**
* Paper: https://arxiv.org/abs/2403.16368
* Code:
**DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks**
* Paper: https://arxiv.org/abs/2405.04408
* Code: https://github.com/ZZZHANG-jx/DocRes
**HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models**
* Paper: https://arxiv.org/abs/2402.15865
* Code: https://github.com/LiPang/HIRDiff
**Image Restoration by Denoising Diffusion Models With Iteratively Preconditioned Guidance**
* Paper: https://arxiv.org/abs/2312.16519
* Code: https://github.com/tirer-lab/DDPG
**Improving Image Restoration through Removing Degradations in Textual Representations**
* Paper: https://arxiv.org/abs/2312.17334
* Code: https://github.com/mrluin/TextualDegRemoval
**Learning Degradation-unaware Representation with Prior-based Latent Transformations for Blind Face Restoration**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Xie_Learning_Degradation-unaware_Representation_with_Prior-based_Latent_Transformations_for_Blind_Face_CVPR_2024_paper.html
* Code:
**Learning Diffusion Texture Priors for Image Restoration**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ye_Learning_Diffusion_Texture_Priors_for_Image_Restoration_CVPR_2024_paper.html
* Code:
**Look-Up Table Compression for Efficient Image Restoration**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Li_Look-Up_Table_Compression_for_Efficient_Image_Restoration_CVPR_2024_paper.html
* Code:
**Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration**
* Paper: https://arxiv.org/abs/2312.02918
* Code:
**PFStorer: Personalized Face Restoration and Super-Resolution**
* Paper: https://arxiv.org/abs/2403.08436
* Code:
**Restoration by Generation with Constrained Priors**
* Paper: https://arxiv.org/abs/2312.17161
* Code:
**Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild**
* Paper: https://arxiv.org/abs/2401.13627
* Code: https://github.com/Fanghua-Yu/SUPIR
**Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model**
* Paper: https://arxiv.org/abs/2403.11157
* Code: https://github.com/iSEE-Laboratory/DiffUIR
**Turb-Seg-Res: A Segment-then-Restore Pipeline for Dynamic Videos with Atmospheric Turbulence**
* Paper: https://arxiv.org/abs/2404.13605
Code: https://github.com/Riponcs/Turb-Seg-Res
**WaveFace: Authentic Face Restoration with Efficient Frequency Recovery**
* Paper: https://arxiv.org/abs/2403.12760
* Code:
**Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration**
* Paper: https://arxiv.org/abs/2311.16845
* Code: https://github.com/zhihefang/wf-diff
## 7.图像增强(Image Enhancement)
**Color Shift Estimation-and-Correction for Image Enhancement**
* Paper: https://drive.google.com/file/d/1jZB2rW_I2WLTE5yNA4IZq9wb5p4NNOCR/view
* Code: https://github.com/yiyulics/CSEC
**Empowering Resampling Operation for Ultra-High-Definition Image Enhancement with Model-Aware Guidance**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Yu_Empowering_Resampling_Operation_for_Ultra-High-Definition_Image_Enhancement_with_Model-Aware_Guidance_CVPR_2024_paper.html
* Code: https://github.com/YPatrickW/LMAR
**Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Lv_Fourier_Priors-Guided_Diffusion_for_Zero-Shot_Joint_Low-Light_Enhancement_and_Deblurring_CVPR_2024_paper.html
* Code:
**FlowIEEfficient Image Enhancement via Rectified Flow**
* Paper: https://arxiv.org/abs/2406.00508
* Code: https://github.com/EternalEvan/FlowIE
**Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving**
* Paper: https://arxiv.org/abs/2404.04804
* Code: https://github.com/jinlong17/LightDiff
**Robust Depth Enhancement via Polarization Prompt Fusion Tuning**
* Paper: https://arxiv.org/abs/2404.04318
* Code: https://github.com/lastbasket/Polarization-Prompt-Fusion-Tuning
**Specularity Factorization for Low Light Enhancement**
* Paper: https://arxiv.org/abs/2404.01998
* Code:
**Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach**
* Paper: https://arxiv.org/abs/2404.00834
* Code: https://github.com/EthanLiang99/EvLight
**ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.html
* Code: https://github.com/Doyle59217/ZeroIG
**Zero-Reference Low-Light Enhancement via Physical Quadruple Priors**
* Paper: https://arxiv.org/abs/2403.12933
* Code: https://github.com/daooshee/QuadPrior
### Video Enhancement
**Binarized Low-light Raw Video Enhancement**
* Paper: https://arxiv.org/abs/2403.19944
* Code: https://github.com/zhanggengchen/BRVE
**UVEB: A Large-scale Benchmark and Baseline Towards Real-World Underwater Video Enhancement**
* Paper: https://arxiv.org/abs/2404.14542
* Code: https://github.com/yzbouc/UVEB
## 8.图像修复(Inpainting)
**Amodal Completion via Progressive Mixed Context Diffusion**
* Paper: https://arxiv.org/abs/2312.15540
* Code: https://github.com/k8xu/amodal
**Brush2Prompt: Contextual Prompt Generator for Object Inpainting**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper.html
* Code:
**Dont Look into the Dark: Latent Codes for Pluralistic Image Inpainting**
* Paper: https://arxiv.org/abs/2403.18186
* Code:
**Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting**
* Paper: https://arxiv.org/abs/2403.19898
* Code: https://github.com/htyjers/StrDiffusion
### Video Inpainting
**AVID: Any-Length Video Inpainting with Diffusion Model**
* Paper: https://arxiv.org/abs/2312.03816
* Code: https://github.com/zhang-zx/AVID
**Towards Language-Driven Video Inpainting via Multimodal Large Language Models**
* Paper: https://arxiv.org/abs/2401.10226
* Code: https://github.com/jianzongwu/Language-Driven-Video-Inpainting
## 9.高动态范围成像(HDR Imaging)
**CLIPtone: Unsupervised Learning for Text-based Image Tone Adjustment**
* Paper: https://arxiv.org/abs/2404.01123
* Code: https://github.com/hmin970922/CLIPtone/
**Deep Video Inverse Tone Mapping Based on Temporal Clues**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ye_Deep_Video_Inverse_Tone_Mapping_Based_on_Temporal_Clues_CVPR_2024_paper.html
* Code: https://github.com/ye3why/VITM-TC
**Generating Content for HDR Deghosting from Frequency View**
* Paper: https://arxiv.org/abs/2404.00849
* Code:
**HDRFlow: Real-Time HDR Video Reconstruction with Large Motions**
* Paper: https://arxiv.org/abs/2403.03447
* Code: https://github.com/OpenImagingLab/HDRFlow
**Perceptual Assessment and Optimization of HDR Image Rendering**
* Paper: https://arxiv.org/abs/2310.12877v4
* Code: https://github.com/cpb68/HDRQA/
**Towards HDR and HFR Video from Rolling-Mixed-Bit Spikings**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chang_Towards_HDR_and_HFR_Video_from_Rolling-Mixed-Bit_Spikings_CVPR_2024_paper.html
* Code:
**Towards Real-World HDR Video Reconstruction: A Large-Scale Benchmark Dataset and A Two-Stage Alignment Network**
* Paper: https://arxiv.org/abs/2405.00244
* Code: https://github.com/yungsyu99/Real-HDRV
**Zero-Shot Structure-Preserving Diffusion Model for High Dynamic Range Tone Mapping**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhu_Zero-Shot_Structure-Preserving_Diffusion_Model_for_High_Dynamic_Range_Tone_Mapping_CVPR_2024_paper.html
* Code:
## 10.图像质量评价(Image Quality Assessment)
**Blind Image Quality Assessment Based on Geometric Order Learning**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shin_Blind_Image_Quality_Assessment_Based_on_Geometric_Order_Learning_CVPR_2024_paper.html
* Code: https://github.com/nhshin-mcl/QCN
**Boosting Image Quality Assessment through Efficient Transformer Adaptation with Local Feature Enhancement**
* Paper: https://arxiv.org/abs/2308.12001
* Code:
**Bridging the Synthetic-to-Authentic Gap: Distortion-Guided Unsupervised Domain Adaptation for Blind Image Quality Assessment**
* Paper: https://arxiv.org/abs/2405.04167
* Code:
**CLIB-FIQA: Face Image Quality Assessment with Confidence Calibration**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ou_CLIB-FIQA_Face_Image_Quality_Assessment_with_Confidence_Calibration_CVPR_2024_paper.html
* Code:
**Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment**
* Paper: https://arxiv.org/abs/2403.10066
* Code:
**Deep Generative Model based Rate-Distortion for Image Downscaling Assessment**
* Paper: https://arxiv.org/abs/2403.15139
* Code: https://github.com/Byronliang8/IDA-RD
**Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization**
* Paper: https://arxiv.org/abs/2403.11397
* Code: https://github.com/YangiD/DefenseIQA-NT
**DSL-FIQA: Assessing Facial Image Quality via Dual-Set Degradation Learning and Landmark-Guided Transformer**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.html
* Code:
**EvalCrafter: Benchmarking and Evaluating Large Video Generation Models**
* Paper: https://arxiv.org/abs/2310.11440
* Code: https://github.com/evalcrafter/EvalCrafter
**FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Quality Assessment**
* Paper: https://arxiv.org/abs/2405.06887
* Code: https://github.com/PKU-ICST-MIPL/FineParser_CVPR2024
**KVQ: Kwai Video Quality Assessment for Short-form Videos**
* Paper: https://arxiv.org/abs/2402.07220
* Code: https://github.com/lixinustc/KVQ-Challenge-CVPR-NTIRE2024
**Learned Scanpaths Aid Blind Panoramic Video Quality Assessment**
* Paper: https://arxiv.org/abs/2404.00252
* Code: https://github.com/kalofan/AutoScanpathQA
**Modular Blind Video Quality Assessment**
* Paper: https://arxiv.org/abs/2402.19276
* Code: https://github.com/winwinwenwen77/ModularBVQA
**On the Content Bias in Fréchet Video Distance**
* Paper: https://arxiv.org/abs/2404.12391
* Code: https://github.com/songweige/content-debiased-fvd
**PTM-VQA: Efficient Video Quality Assessment Leveraging Diverse PreTrained Models from the Wild**
* Paper: https://arxiv.org/abs/2405.17765
* Code:
**Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models**
* Paper: https://arxiv.org/abs/2311.06783
* Code: https://github.com/Q-Future/Q-Instruct
## 11.插帧(Frame Interpolation)
**Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images**
Paper: https://arxiv.org/abs/2404.01464
Code: https://github.com/jungeun122333/UVI-Net
**IQ-VFI: Implicit Quadratic Motion Estimation for Video Frame Interpolation**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Hu_IQ-VFI_Implicit_Quadratic_Motion_Estimation_for_Video_Frame_Interpolation_CVPR_2024_paper.html
* Code:
**Perceptual-Oriented Video Frame Interpolation Via Asymmetric Synergistic Blending**
* Paper: https://arxiv.org/abs/2404.06692
* Code:
**Sparse Global Matching for Video Frame Interpolation with Large Motion**
* Paper: https://arxiv.org/abs/2404.06913
* Code: https://github.com/MCG-NJU/SGM-VFI
**SportsSloMo: A New Benchmark and Baselines for Human-centric Video Frame Interpolation**
* Paper: https://arxiv.org/abs/2308.16876
* Code: https://github.com/neu-vi/SportsSloMo
**TTA-EVF: Test-Time Adaptation for Event-based Video Frame Interpolation via Reliable Pixel and Sample Estimation**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Cho_TTA-EVF_Test-Time_Adaptation_for_Event-based_Video_Frame_Interpolation_via_Reliable_CVPR_2024_paper.html
* Code: https://github.com/Chohoonhee/TTA-EVF
**Video Frame Interpolation via Direct Synthesis with the Event-based Reference**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Video_Frame_Interpolation_via_Direct_Synthesis_with_the_Event-based_Reference_CVPR_2024_paper.html
* Code:
**Video Interpolation with Diffusion Models**
* Paper: https://arxiv.org/abs/2404.01203
* Code:
## 12.视频/图像压缩(Video/Image Compression)
**C3: High-performance and low-complexity neural compression from a single image or video**
* Paper: https://arxiv.org/abs/2312.02753
* Code: https://github.com/google-deepmind/c3_neural_compression
**Generative Latent Coding for Ultra-Low Bitrate Image Compression**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Jia_Generative_Latent_Coding_for_Ultra-Low_Bitrate_Image_Compression_CVPR_2024_paper.html
* Code:
**Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis**
* Paper: https://arxiv.org/abs/2403.16258
* Code:
**Learned Lossless Image Compression based on Bit Plane Slicing**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Learned_Lossless_Image_Compression_based_on_Bit_Plane_Slicing_CVPR_2024_paper.html
* Code: https://github.com/ZZ022/ArIB-BPS
**Towards Backward-Compatible Continual Learning of Image Compression**
* Paper: https://arxiv.org/abs/2402.18862
* Code: https://gitlab.com/viper-purdue/continual-compression
### Video Compression
**Task-Aware Encoder Control for Deep Video Compression**
* Paper: https://arxiv.org/abs/2404.04848
* Code:
**Low-Latency Neural Stereo Streaming**
* Paper: https://arxiv.org/abs/2403.17879
* Code:
**Neural Video Compression with Feature Modulation**
* Paper: https://arxiv.org/abs/2402.17414
* Code: https://github.com/microsoft/DCVC
## 13.压缩图像质量增强(Compressed Image Quality Enhancement)
**CPGA: Coding Priors-Guided Aggregation Network for Compressed Video Quality Enhancement**
* Paper: https://arxiv.org/abs/2403.10362
* Code:
**Enhancing Quality of Compressed Images by Mitigating Enhancement Bias Towards Compression Domain**
* Paper: https://arxiv.org/abs/2402.17200
* Code:
## 14.图像去反光(Image Reflection Removal)
**Language-guided Image Reflection Separation**
* Paper: https://arxiv.org/abs/2402.11874
* Code:
**Revisiting Singlelmage Reflection Removal in the Wild**
* Paper: https://arxiv.org/abs/2311.17320
* Code: https://github.com/zhuyr97/Reflection_RemoVal_CVPR2024
## 15.图像去阴影(Image Shadow Removal)
**HomoFormer: Homogenized Transformer for Image Shadow Removal**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper.html
* Code: https://github.com/jiexiaou/HomoFormer
## 16.图像上色(Image Colorization)
**Automatic Controllable Colorization by Imagination**
* Paper: https://arxiv.org/abs/2404.05661
* Code: https://github.com/xy-cong/imagine-colorization
**Generative Quanta Color Imaging**
* Paper: https://arxiv.org/abs/2403.19066
* Code:
**Learning Inclusion Matching for Animation Paint Bucket Colorization**
* Paper: https://arxiv.org/abs/2403.18342
* Code: https://github.com/ykdai/BasicPBC
## 17.图像和谐化(Image Harmonization)
**Relightful Harmonization: Lighting-aware Portrait Background Replacement**
* Paper: https://arxiv.org/abs/2312.06886
* Code:
**Video Harmonization with Triplet Spatio-Temporal Variation Patterns**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Guo_Video_Harmonization_with_Triplet_Spatio-Temporal_Variation_Patterns_CVPR_2024_paper.html
* Code: https://github.com/zhenglab/VideoTripletTransformer
## 18.视频稳相(Video Stabilization)
**3D Multi-frame Fusion for Video Stabilization**
* Paper: https://arxiv.org/abs/2404.12887
* Code:
**Harnessing Meta-Learning for Improving Full-Frame Video Stabilization**
* Paper: https://arxiv.org/abs/2403.03662
* Code: https://github.com/MKashifAli/MetaVideoStab
## 19.图像融合(Image Fusion)
**Equivariant Multi-Modality Image Fusion**
* Paper https://arxiv.org/abs/2305.11443
* Code: https://github.com/Zhaozixiang1228/MMIF-EMMA
**MRFS: Mutually Reinforcing Image Fusion and Segmentation**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_MRFS_Mutually_Reinforcing_Image_Fusion_and_Segmentation_CVPR_2024_paper.html
* Code: https://github.com/HaoZhang1018/MRFS
**Neural Spline Fields for Burst Image Fusion and Layer Separation**
* Paper: https://arxiv.org/abs/2312.14235
* Code: https://github.com/princeton-computational-imaging/NSF
**Probing Synergistic High-Order Interaction in Infrared and Visible Image Fusion**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Probing_Synergistic_High-Order_Interaction_in_Infrared_and_Visible_Image_Fusion_CVPR_2024_paper.html
* Code:
**Revisiting Spatial-Frequency Information Integration from a Hierarchical Perspective for Panchromatic and Multi-Spectral Image Fusion**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Probing_Synergistic_High-Order_Interaction_in_Infrared_and_Visible_Image_Fusion_CVPR_2024_paper.html
* Code:
**Text-IF: Leveraging Semantic Text Guidance for Degradation-Aware and Interactive Image Fusion**
* Paper: https://arxiv.org/abs/2403.16387
* Code: https://github.com/XunpengYi/Text-IF
**Task-Customized Mixture of Adapters for General Image Fusion**
* Paper: https://arxiv.org/abs/2403.12494
* Code: https://github.com/YangSun22/TC-MoA
## 20.其他任务(Others)
**Close Imitation of Expert Retouching for Black-and-White Photography**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shin_Close_Imitation_of_Expert_Retouching_for_Black-and-White_Photography_CVPR_2024_paper.html
* Code: https://github.com/seunghyuns98/Decolorization
**Content-Adaptive Non-Local Convolution for Remote Sensing Pansharpening**
Paper: https://arxiv.org/abs/2404.07543
Code: https://github.com/Duanyll/CANConv
**DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral Diffusion Model**
* Paper: https://arxiv.org/abs/2311.11417
* Code: https://github.com/PAN083/DiffSCI
**Dual Prior Unfolding for Snapshot Compressive Imaging**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Dual_Prior_Unfolding_for_Snapshot_Compressive_Imaging_CVPR_2024_paper.html
* Code: https://github.com/ZhangJC-2k/DPU
**Dual-Camera Smooth Zoom on Mobile Phones**
* Paper: https://arxiv.org/abs/2404.04908
* Code: https://github.com/ZcsrenlongZ/ZoomGS
**Dual-scale Transformer for Large-scale Single-Pixel Imaging**
* Paper: https://arxiv.org/abs/2404.05001
* Code: https://github.com/Gang-Qu/HATNet-SPI
**Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for Video Adverse Weather Removal**
* Paper: https://arxiv.org/abs/2403.07684
* Code: https://github.com/scott-yjyang/DiffTTA
**Language-driven All-in-one Adverse Weather Removal**
* Paper: https://arxiv.org/abs/2312.01381
* Code:
**Learning to Remove Wrinkled Transparent Film with Polarized Prior**
* Paper: https://arxiv.org/abs/2403.04368
* Code: https://github.com/jqtangust/FilmRemovalww
**Misalignment-Robust Frequency Distribution Loss for Image Transformation**
* Paper: https://arxiv.org/abs/2402.18192
* Code: https://github.com/eezkni/FDL
**On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation**
* Paper: https://arxiv.org/abs/2404.08540
* Code: https://github.com/agneet42/lang_depth
**ParamISP: Learned Forward and Inverse ISPs using Camera Parameters**
* Paper: https://arxiv.org/abs/2312.13313
* Code: https://github.com/woo525/ParamISP
**RecDiffusion: Rectangling for Image Stitching with Diffusion Models**
* Paper: https://arxiv.org/abs/2402.18192
* Code: https://github.com/lhaippp/RecDiffusion
**Residual Denoising Diffusion Models**
* Paper: https://arxiv.org/abs/2308.13712
* Code: https://github.com/nachifur/RDDM
**Real-Time Exposure Correction via Collaborative Transformations and Adaptive Sampling**
* Paper: https://arxiv.org/abs/2404.11884
* Code: https://github.com/HUST-IAL/CoTF
**SCINeRF: Neural Radiance Fields from a Snapshot Compressive Image**
* Paper: https://arxiv.org/abs/2403.20018
* Code: https://github.com/WU-CVGL/SCINeRF
**Seeing Motion at Nighttime with an Event Camera**
* Paper: https://arxiv.org/abs/2404.11884
* Code: https://github.com/Liu-haoyue/NER-Net
**Shadow Generation for Composite Image Using Diffusion Model**
* Paper: https://arxiv.org/abs/2403.15234
* Code: https://github.com/bcmi/Object-Shadow-Generation-Dataset-DESOBAv2
**Improving Spectral Snapshot Reconstruction with Spectral-Spatial Rectification**
* Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Improving_Spectral_Snapshot_Reconstruction_with_Spectral-Spatial_Rectification_CVPR_2024_paper.html
* Code: https://github.com/ZhangJC-2k/SSR
## 参考
相关Low-Level-Vision整理
Awesome-CVPR2020-Low-Level-Vision
Awesome-ECCV2020-Low-Level-Vision
Awesome-Low-Level-Vision-Research-Groups
Awesome-AIGC-Research-Groups

View File

@ -0,0 +1,40 @@
# 2024-11-15感知智能组会汇报
# 一、近期工作
**Image Generation** vs **Image Reconstruction**
* **Image Generation**:指通过算法从零开始生成新的图像,通常基于一些输入条件(如文本描述、特定样式、语义信息)或随机噪声(如生成对抗网络的输入)。目的是创造出逼真的、具有特定特征的图像。
* **无条件生成**是指无条件地从数据集中生成样本,即:$p(y)$
* **条件图像生成**(子任务)是指根据标签有条件地从数据集中生成样本,即:$p(y|x)$
* **Image Reconstruction**:指从已有的、可能损坏、不完整或压缩的图像数据中恢复原始图像,或者从观测数据中重建图像。目标是尽可能还原出真实图像。
| **特性** | 图像生成 (Image Generation) | 图像重建 (Image Reconstruction) |
|--------|------|--------|
| **输入** | 随机噪声、文本或条件标签等 | 受损图像、不完整数据(如低分辨率图像、部分丢失的像素、模糊图像) |
| **输出** | 全新的图像,可能是艺术性的、合成的或逼真的 | 修复后的图像,接近原始清晰图像 |
| **目标** | 目标是创造性地生成新图像,关注生成图像的多样性和真实性;注重图像的视觉质量、逼真度以及与输入条件的匹配度。 | 目标是恢复或重建图像,尽可能减少噪声、模糊和失真;注重恢复的准确性和保真度,强调与真实图像的接近程度。 |
| **技术方法** | 典型方法包括生成对抗网络GANs、变分自编码器VAEs、扩散模型、条件生成模型等 | 通常基于优化和重建技术包括卷积神经网络CNNs、自编码器Autoencoders、逆问题求解方法如去噪、自适应插值、正则化技术等 |
| **应用场景** | 数字艺术与内容创作如DALL·E、Stable Diffusion、数据增强为训练AI生成多样化样本、虚拟世界构建如游戏、元宇宙、图像翻译风格迁移、照片转漫画 | 医学成像如CT/MRI图像修复、摄影中的图像去噪、超分辨率重建、遥感影像处理如卫星图像云层去除、逆向工程如压缩图片的质量恢复 |
图像生成更侧重创新性,图像重建更注重还原性,但两者都在提升图像质量和智能处理方面发挥着重要作用。
我们所希望做的特征还原/图像补全/遮挡还原更倾向于**Image Reconstruction**部分的内容但可以同时借鉴Generation和Reconstruction两个部分的内容展开。
* 从**Image Generation**的角度:关注补全的多样性和合理性
* 全局理解:
* MAE需要通过观察未遮挡部分来推测被遮挡区域的内容这需要全局上下文信息的支持与图像生成中的全局一致性思路相似。
* 补全结果不仅要像原图,还需要自然、符合上下文逻辑。
* 潜在表征学习:
* MAE利用自监督学习类似生成任务中的生成网络通过学习隐藏空间latent space中的表征来预测缺失区域的可能内容。
* 去噪补全:
* 与扩散模型类似MAE可以从不确定性的潜在空间中逐步补全遮挡区域。
* 从**Image Reconstruction**的角度:注重还原真实性
* 输入部分:
* MAE的输入是遮挡了部分像素的图像这与图像重建任务中不完整图像作为输入相似。
* 模型需要从局部上下文信息中恢复被遮挡的区域,这与图像重建强调从不完整数据中提取有用信息的思路一致。
* 目标:
* 恢复缺失的像素,使得补全后的图像尽可能接近原始图像,注重重建的保真度。
* MAE的设计目标是通过有效的编码和解码过程使模型学会图像的局部与整体关系。
为了实现我们想要的部分最好是找reconstruction领域去finetune的合理方法以及在generation领域的创新模块表示。除此之外在segmentation领域找到优化的方案。
# 二、未来规划
阅读《Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting》以及所总结的和自己相关方向的论文

View File

@ -0,0 +1,26 @@
# Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting
* Paper Link:https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Structure_Matters_Tackling_the_Semantic_Discrepancy_in_Diffusion_Models_for_CVPR_2024_paper.pdf
* Code Link:https://github.com/htyjers/StrDiffusion
## Abstract
图像修复中的去噪扩散概率模型DDPMs旨在正向修复过程中向图像纹理中添加噪声反向修复过程中利用纹理未被掩盖区域恢复被掩盖区域去噪过程。尽管进行了有意义的语义生成但现有的方法存在被屏蔽和未屏蔽区域之间的语义差异因为语义密集的未屏蔽纹理在扩散过程中没有被完全退化而被屏蔽区域在扩散过程中变成了纯噪声导致它们之间存在较大的差异。本文旨在回答未掩码语义如何指导纹理去噪过程以及如何解决语义差异以促进一致和有意义的语义生成。为此本文提出了一种基于结构引导的图像修复扩散模型StrDiffusion该模型在结构指导下对传统的纹理去噪过程进行重新表述从而得到一个简化的图像修复去噪目标同时揭示了
* 语义稀疏的结构有利于早期解决语义差异问题,而稠密的纹理则能在后期生成合理的语义;
* 得益于结构语义的时变稀疏性,未掩盖区域的语义本质上为纹理去噪过程提供了时变结构指导。在去噪过程中,通过利用掩码区域和未掩码区域之间的去噪结构的一致性,训练一个结构引导的神经网络来估计简化的去噪目标。
* 此外设计了一种自适应重采样策略作为结构是否能够指导纹理去噪过程的形式化标准同时调节其语义相关性。通过大量实验验证了StrDiffusion算法相对于现有算法的优点。
## 1.Introduction
最近,图像修复支持了广泛的应用,例如照片恢复和图像编辑,其目的是用未掩蔽区域的语义信息恢复图像的掩蔽区域,其原理主要涵盖两个方面:掩蔽区域的合理语义及其与未掩蔽区域语义的一致性。现有的工作主要涉及基于扩散的[2,8]和基于补丁的[1,4,10]方案,该方案倾向于通过简单的颜色信息输入图像的小掩模或重复图案,而无法处理不规则或复杂的掩模。为了解决这个问题,大量的注意力[15,17,31,36]已经转移到卷积神经网络CNN它致力于在掩码区域周围对局部语义进行编码而忽略来自未掩码区域的全局信息导致远离掩码边界的区域保持毛茸。最近自我注意机制[514163235]被提出以分割图像块的形式将掩蔽区域与未掩蔽区域全局关联,增强了它们之间的语义一致性。然而,这种策略在掩蔽区域内不同斑块之间的语义相关性较差。为此,利用语义稀疏结构[37913182027283334]来增强它们的相关性,然而,这意味着严重依赖结构和纹理之间的语义一致性,因此不可避免地在内嵌输出中带有伪影。
幸运的是去噪扩散概率模型DDPM[12,25]已成为强大的生成模型,在语义生成和模式收敛方面取得了显著进展,从而很好地弥补了图像修复语义生成不佳的问题[22,23,29,38]。具体来说,[22]建议采用预训练的DDPM作为先验而不是专注于训练过程并开发一种重采样策略来调节推理过程中的反向去噪过程。此外[23]试图通过利用未掩蔽区域的语义来模拟图像修复的扩散过程从而为去噪过程提供最佳的反向解决方案。这些方法大多表现出具有DDPM优势的语义有意义的修复结果而忽略了掩蔽和未掩蔽区域之间的语义一致性。直觉是语义密集的无掩模纹理退化为无掩模结构和高斯噪声的组合而掩模区域在扩散过程中变成了纯噪声导致它们之间存在很大差异见图1a和图2a并引发了以下问题
* 1*无掩模语义如何指导图像修复的纹理去噪过程?*我们的激励实验建议当未掩蔽的语义与噪声相结合变得更稀疏时例如利用掩蔽图像的灰度或边缘图作为替代差异问题在很大程度上得到了缓解同时在修复结果中损失了大量的语义信息见图2bc。因此未掩蔽区域随时间变化的不变语义无法很好地指导纹理去噪过程。
* 2在 (1) 之后,人们自然会想知道*如何产生具有一致且有意义的语义的去噪结果*。很明显稀疏结构在早期阶段有利于语义一致性而密集纹理在去噪过程中倾向于在后期生成有意义的语义这意味着去噪结果的一致性和合理语义之间的平衡。为了进一步产生理想的结果我们将结构的引导视为纹理去噪过程的辅助见图1(B)
## 2.Structure-Guided Texture Diffusion Models
### 2.1 Preliminaries: Denoising Diffusion Probabilistic Models for Image Inpainting
### 2.2 Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting
#### 2.2.1 Structure Matters: Sparse Semantics benefits the Semantic Consistency
#### 2.2.2 Optimal Solution to the Denoising Process Under the Guidance of the Structure
### 2.3 Structure-Guided Denoising Process: How does the Structure Guide the Texture Denoising Process?