# 2022.11 CS231n学习汇报 介绍CS231n部分的学习,包含计算机视觉简介、图像分类(K最邻近算法、线性分类)、神经网络以及卷积神经网络部分 # 2022.12 行人重识别任务汇报 关于行人重识别第一个阶段的学习汇报 # 2023.9 行人检测汇报 关于行人检测系列论文汇报汇总 * Co-Scale Conv-Attentional Image Transformers * LEAPS: End-to-End One-Step Person Search With Learnable Proposals * Cascade Transformers for End-to-End Person Search * PSTR: End-to-End One-Step Person Search With Transformers * FCOS: Fully Convolutional One-Stage Object Detection * Optimal Proposal Learning for Deployable End-to-End Pedestrian Detection # 2024.1 相关论文阅读汇报 包含其他方面结合MAE部分的汇报 * Generic-to-Specific Distillation of Masked Autoencoders # 2024.3 2024春季论文汇报 包含MAE有关工作及文章部分汇总 * Masked Autoencoders Are Scalable Vision Learners * BEiT: BERT Pre-Training of Image Transformers * BEIT V2: Masked Image Modeling with Vector-Quantized Visual Tokenizers * Uniform Masking: Enabling MAE Pre-training for Pyramid-based Vision Transformers with Locality * HiViT: Hierarchical Vision Transformer Meets Masked Image Modeling * MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers * MultiMAE: Multi-modal Multi-task Masked Autoencoders * ConvMAE: Masked Convolution Meets Masked Autoencoders * RetroMAE: Pre-training Retrieval-oriented Transformers via Masked Auto-Encoder * Siamese Masked Autoencoders * Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation * Integral Migrating Pre-trained Transformer Encoder-decoders for Visual Object Detection * Masked Image Modeling with Local Multi-Scale Reconstruction * VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training * VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking