39 lines
2.0 KiB
Markdown
39 lines
2.0 KiB
Markdown
# 2022.11 CS231n学习汇报
|
||
介绍CS231n部分的学习,包含计算机视觉简介、图像分类(K最邻近算法、线性分类)、神经网络以及卷积神经网络部分
|
||
|
||
# 2022.12 行人重识别任务汇报
|
||
关于行人重识别第一个阶段的学习汇报
|
||
|
||
# 2023.9 行人检测汇报
|
||
关于行人检测系列论文汇报汇总
|
||
* Co-Scale Conv-Attentional Image Transformers
|
||
* LEAPS: End-to-End One-Step Person Search With Learnable Proposals
|
||
* Cascade Transformers for End-to-End Person Search
|
||
* PSTR: End-to-End One-Step Person Search With Transformers
|
||
* FCOS: Fully Convolutional One-Stage Object Detection
|
||
* Optimal Proposal Learning for Deployable End-to-End Pedestrian Detection
|
||
|
||
# 2024.1 相关论文阅读汇报
|
||
包含其他方面结合MAE部分的汇报
|
||
* Generic-to-Specific Distillation of Masked Autoencoders
|
||
|
||
# 2024.3 2024春季论文汇报
|
||
包含MAE有关工作及文章部分汇总
|
||
* Masked Autoencoders Are Scalable Vision Learners
|
||
* BEiT: BERT Pre-Training of Image Transformers
|
||
* BEIT V2: Masked Image Modeling with Vector-Quantized Visual Tokenizers
|
||
* Uniform Masking: Enabling MAE Pre-training for Pyramid-based Vision Transformers with Locality
|
||
* HiViT: Hierarchical Vision Transformer Meets Masked Image Modeling
|
||
* MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers
|
||
* MultiMAE: Multi-modal Multi-task Masked Autoencoders
|
||
* ConvMAE: Masked Convolution Meets Masked Autoencoders
|
||
* RetroMAE: Pre-training Retrieval-oriented Transformers via Masked Auto-Encoder
|
||
* Siamese Masked Autoencoders
|
||
|
||
* Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation
|
||
* Integral Migrating Pre-trained Transformer Encoder-decoders for Visual Object Detection
|
||
|
||
* Masked Image Modeling with Local Multi-Scale Reconstruction
|
||
* VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training
|
||
* VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking
|