Report/Presentation
杨思洁 89efa25955 add new notes 2024-11-15 16:00:49 +08:00
..
.2024春季论文汇报-杨思洁.pptx.icloud add new notes 2024-11-15 16:00:49 +08:00
.CS231n学习汇报-杨思洁.pptx.icloud add new notes 2024-11-15 16:00:49 +08:00
.相关论文阅读汇报-杨思洁.pptx.icloud add new notes 2024-11-15 16:00:49 +08:00
.行人检测汇报-杨思洁.pptx.icloud add new notes 2024-11-15 16:00:49 +08:00
2024春季论文汇报-杨思洁.pptx add presentations 2024-10-28 11:39:05 +08:00
CS231n学习汇报-杨思洁.pptx add presentations 2024-10-28 11:39:05 +08:00
README.md Rename 2024-10-29 14:43:44 +08:00
相关论文阅读汇报-杨思洁.pptx add presentations 2024-10-28 11:39:05 +08:00
行人检测汇报-杨思洁.pptx add presentations 2024-10-28 11:39:05 +08:00
行人重识别任务汇报-杨思洁.pptx add presentations 2024-10-28 11:39:05 +08:00

README.md

2022.11 CS231n学习汇报

介绍CS231n部分的学习包含计算机视觉简介、图像分类K最邻近算法、线性分类、神经网络以及卷积神经网络部分

2022.12 行人重识别任务汇报

关于行人重识别第一个阶段的学习汇报

2023.9 行人检测汇报

关于行人检测系列论文汇报汇总
  • Co-Scale Conv-Attentional Image Transformers
  • LEAPS: End-to-End One-Step Person Search With Learnable Proposals
  • Cascade Transformers for End-to-End Person Search
  • PSTR: End-to-End One-Step Person Search With Transformers
  • FCOS: Fully Convolutional One-Stage Object Detection
  • Optimal Proposal Learning for Deployable End-to-End Pedestrian Detection

2024.1 相关论文阅读汇报

包含其他方面结合MAE部分的汇报
  • Generic-to-Specific Distillation of Masked Autoencoders

2024.3 2024春季论文汇报

包含MAE有关工作及文章部分汇总
  • Masked Autoencoders Are Scalable Vision Learners

  • BEiT: BERT Pre-Training of Image Transformers

  • BEIT V2: Masked Image Modeling with Vector-Quantized Visual Tokenizers

  • Uniform Masking: Enabling MAE Pre-training for Pyramid-based Vision Transformers with Locality

  • HiViT: Hierarchical Vision Transformer Meets Masked Image Modeling

  • MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers

  • MultiMAE: Multi-modal Multi-task Masked Autoencoders

  • ConvMAE: Masked Convolution Meets Masked Autoencoders

  • RetroMAE: Pre-training Retrieval-oriented Transformers via Masked Auto-Encoder

  • Siamese Masked Autoencoders

  • Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation

  • Integral Migrating Pre-trained Transformer Encoder-decoders for Visual Object Detection

  • Masked Image Modeling with Local Multi-Scale Reconstruction

  • VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training

  • VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking