389 lines
12 KiB
C++
389 lines
12 KiB
C++
|
///
|
||
|
// Hungarian.cpp: Implementation file for Class HungarianAlgorithm.
|
||
|
//
|
||
|
// This is a C++ wrapper with slight modification of a hungarian algorithm implementation by Markus Buehren.
|
||
|
// The original implementation is a few mex-functions for use in MATLAB, found here:
|
||
|
// http://www.mathworks.com/matlabcentral/fileexchange/6543-functions-for-the-rectangular-assignment-problem
|
||
|
//
|
||
|
// Both this code and the orignal code are published under the BSD license.
|
||
|
// by Cong Ma, 2016
|
||
|
//
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <cfloat> // for DBL_MAX
|
||
|
#include <cmath> // for fabs()
|
||
|
#include "Hungarian.h"
|
||
|
|
||
|
|
||
|
HungarianAlgorithm::HungarianAlgorithm() {}
|
||
|
HungarianAlgorithm::~HungarianAlgorithm() {}
|
||
|
|
||
|
|
||
|
//********************************************************//
|
||
|
// A single function wrapper for solving assignment problem.
|
||
|
//********************************************************//
|
||
|
float HungarianAlgorithm::Solve(std::vector<std::vector<float> >& DistMatrix, std::vector<int>& Assignment)
|
||
|
{
|
||
|
unsigned int nRows = DistMatrix.size();
|
||
|
unsigned int nCols = DistMatrix[0].size();
|
||
|
|
||
|
float* distMatrixIn = new float[nRows * nCols];
|
||
|
int* assignment = new int[nRows];
|
||
|
float cost = 0.0;
|
||
|
|
||
|
// Fill in the distMatrixIn. Mind the index is "i + nRows * j".
|
||
|
// Here the cost matrix of size MxN is defined as a float precision array of N*M elements.
|
||
|
// In the solving functions matrices are seen to be saved MATLAB-internally in row-order.
|
||
|
// (i.e. the matrix [1 2; 3 4] will be stored as a vector [1 3 2 4], NOT [1 2 3 4]).
|
||
|
for (unsigned int i = 0; i < nRows; i++)
|
||
|
for (unsigned int j = 0; j < nCols; j++)
|
||
|
distMatrixIn[i + nRows * j] = DistMatrix[i][j];
|
||
|
|
||
|
// call solving function
|
||
|
assignmentoptimal(assignment, &cost, distMatrixIn, nRows, nCols);
|
||
|
|
||
|
Assignment.clear();
|
||
|
for (unsigned int r = 0; r < nRows; r++)
|
||
|
Assignment.push_back(assignment[r]);
|
||
|
|
||
|
delete[] distMatrixIn;
|
||
|
delete[] assignment;
|
||
|
return cost;
|
||
|
}
|
||
|
|
||
|
|
||
|
//********************************************************//
|
||
|
// Solve optimal solution for assignment problem using Munkres algorithm, also known as Hungarian Algorithm.
|
||
|
//********************************************************//
|
||
|
void HungarianAlgorithm::assignmentoptimal(int* assignment, float* cost, float* distMatrixIn, int nOfRows, int nOfColumns)
|
||
|
{
|
||
|
float* distMatrix, * distMatrixTemp, * distMatrixEnd, * columnEnd, value, minValue;
|
||
|
bool* coveredColumns, * coveredRows, * starMatrix, * newStarMatrix, * primeMatrix;
|
||
|
int nOfElements, minDim, row, col;
|
||
|
|
||
|
/* initialization */
|
||
|
*cost = 0;
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
assignment[row] = -1;
|
||
|
|
||
|
/* generate working copy of distance Matrix */
|
||
|
/* check if all matrix elements are positive */
|
||
|
nOfElements = nOfRows * nOfColumns;
|
||
|
distMatrix = (float*)malloc(nOfElements * sizeof(float));
|
||
|
distMatrixEnd = distMatrix + nOfElements;
|
||
|
|
||
|
for (row = 0; row < nOfElements; row++)
|
||
|
distMatrix[row] = distMatrixIn[row];;
|
||
|
|
||
|
/* memory allocation */
|
||
|
coveredColumns = (bool*)calloc(nOfColumns, sizeof(bool));
|
||
|
coveredRows = (bool*)calloc(nOfRows, sizeof(bool));
|
||
|
starMatrix = (bool*)calloc(nOfElements, sizeof(bool));
|
||
|
primeMatrix = (bool*)calloc(nOfElements, sizeof(bool));
|
||
|
newStarMatrix = (bool*)calloc(nOfElements, sizeof(bool)); /* used in step4 */
|
||
|
|
||
|
/* preliminary steps */
|
||
|
if (nOfRows <= nOfColumns)
|
||
|
{
|
||
|
minDim = nOfRows;
|
||
|
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
{
|
||
|
/* find the smallest element in the row */
|
||
|
distMatrixTemp = distMatrix + row;
|
||
|
minValue = *distMatrixTemp;
|
||
|
distMatrixTemp += nOfRows;
|
||
|
while (distMatrixTemp < distMatrixEnd)
|
||
|
{
|
||
|
value = *distMatrixTemp;
|
||
|
if (value < minValue)
|
||
|
minValue = value;
|
||
|
distMatrixTemp += nOfRows;
|
||
|
}
|
||
|
|
||
|
/* subtract the smallest element from each element of the row */
|
||
|
distMatrixTemp = distMatrix + row;
|
||
|
while (distMatrixTemp < distMatrixEnd)
|
||
|
{
|
||
|
*distMatrixTemp -= minValue;
|
||
|
distMatrixTemp += nOfRows;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Steps 1 and 2a */
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
if (fabs(distMatrix[row + nOfRows * col]) < DBL_EPSILON)
|
||
|
if (!coveredColumns[col])
|
||
|
{
|
||
|
starMatrix[row + nOfRows * col] = true;
|
||
|
coveredColumns[col] = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else /* if(nOfRows > nOfColumns) */
|
||
|
{
|
||
|
minDim = nOfColumns;
|
||
|
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
{
|
||
|
/* find the smallest element in the column */
|
||
|
distMatrixTemp = distMatrix + nOfRows * col;
|
||
|
columnEnd = distMatrixTemp + nOfRows;
|
||
|
|
||
|
minValue = *distMatrixTemp++;
|
||
|
while (distMatrixTemp < columnEnd)
|
||
|
{
|
||
|
value = *distMatrixTemp++;
|
||
|
if (value < minValue)
|
||
|
minValue = value;
|
||
|
}
|
||
|
|
||
|
/* subtract the smallest element from each element of the column */
|
||
|
distMatrixTemp = distMatrix + nOfRows * col;
|
||
|
while (distMatrixTemp < columnEnd)
|
||
|
*distMatrixTemp++ -= minValue;
|
||
|
}
|
||
|
|
||
|
/* Steps 1 and 2a */
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
if (fabs(distMatrix[row + nOfRows * col]) < DBL_EPSILON)
|
||
|
if (!coveredRows[row])
|
||
|
{
|
||
|
starMatrix[row + nOfRows * col] = true;
|
||
|
coveredColumns[col] = true;
|
||
|
coveredRows[row] = true;
|
||
|
break;
|
||
|
}
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
coveredRows[row] = false;
|
||
|
|
||
|
}
|
||
|
|
||
|
/* move to step 2b */
|
||
|
step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
|
||
|
|
||
|
/* compute cost and remove invalid assignments */
|
||
|
computeassignmentcost(assignment, cost, distMatrixIn, nOfRows);
|
||
|
|
||
|
/* free allocated memory */
|
||
|
free(distMatrix);
|
||
|
free(coveredColumns);
|
||
|
free(coveredRows);
|
||
|
free(starMatrix);
|
||
|
free(primeMatrix);
|
||
|
free(newStarMatrix);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********************************************************/
|
||
|
void HungarianAlgorithm::buildassignmentvector(int* assignment, bool* starMatrix, int nOfRows, int nOfColumns)
|
||
|
{
|
||
|
int row, col;
|
||
|
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
if (starMatrix[row + nOfRows * col])
|
||
|
{
|
||
|
#ifdef ONE_INDEXING
|
||
|
assignment[row] = col + 1; /* MATLAB-Indexing */
|
||
|
#else
|
||
|
assignment[row] = col;
|
||
|
#endif
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/********************************************************/
|
||
|
void HungarianAlgorithm::computeassignmentcost(int* assignment, float* cost, float* distMatrix, int nOfRows)
|
||
|
{
|
||
|
int row, col;
|
||
|
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
{
|
||
|
col = assignment[row];
|
||
|
if (col >= 0)
|
||
|
*cost += distMatrix[row + nOfRows * col];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/********************************************************/
|
||
|
void HungarianAlgorithm::step2a(int* assignment, float* distMatrix, bool* starMatrix, bool* newStarMatrix, bool* primeMatrix, bool* coveredColumns, bool* coveredRows, int nOfRows, int nOfColumns, int minDim)
|
||
|
{
|
||
|
bool* starMatrixTemp, * columnEnd;
|
||
|
int col;
|
||
|
|
||
|
/* cover every column containing a starred zero */
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
{
|
||
|
starMatrixTemp = starMatrix + nOfRows * col;
|
||
|
columnEnd = starMatrixTemp + nOfRows;
|
||
|
while (starMatrixTemp < columnEnd) {
|
||
|
if (*starMatrixTemp++)
|
||
|
{
|
||
|
coveredColumns[col] = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* move to step 3 */
|
||
|
step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
|
||
|
}
|
||
|
|
||
|
/********************************************************/
|
||
|
void HungarianAlgorithm::step2b(int* assignment, float* distMatrix, bool* starMatrix, bool* newStarMatrix, bool* primeMatrix, bool* coveredColumns, bool* coveredRows, int nOfRows, int nOfColumns, int minDim)
|
||
|
{
|
||
|
int col, nOfCoveredColumns;
|
||
|
|
||
|
/* count covered columns */
|
||
|
nOfCoveredColumns = 0;
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
if (coveredColumns[col])
|
||
|
nOfCoveredColumns++;
|
||
|
|
||
|
if (nOfCoveredColumns == minDim)
|
||
|
{
|
||
|
/* algorithm finished */
|
||
|
buildassignmentvector(assignment, starMatrix, nOfRows, nOfColumns);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* move to step 3 */
|
||
|
step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/********************************************************/
|
||
|
void HungarianAlgorithm::step3(int* assignment, float* distMatrix, bool* starMatrix, bool* newStarMatrix, bool* primeMatrix, bool* coveredColumns, bool* coveredRows, int nOfRows, int nOfColumns, int minDim)
|
||
|
{
|
||
|
bool zerosFound;
|
||
|
int row, col, starCol;
|
||
|
|
||
|
zerosFound = true;
|
||
|
while (zerosFound)
|
||
|
{
|
||
|
zerosFound = false;
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
if (!coveredColumns[col])
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
if ((!coveredRows[row]) && (fabs(distMatrix[row + nOfRows * col]) < DBL_EPSILON))
|
||
|
{
|
||
|
/* prime zero */
|
||
|
primeMatrix[row + nOfRows * col] = true;
|
||
|
|
||
|
/* find starred zero in current row */
|
||
|
for (starCol = 0; starCol < nOfColumns; starCol++)
|
||
|
if (starMatrix[row + nOfRows * starCol])
|
||
|
break;
|
||
|
|
||
|
if (starCol == nOfColumns) /* no starred zero found */
|
||
|
{
|
||
|
/* move to step 4 */
|
||
|
step4(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim, row, col);
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
coveredRows[row] = true;
|
||
|
coveredColumns[starCol] = false;
|
||
|
zerosFound = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* move to step 5 */
|
||
|
step5(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
|
||
|
}
|
||
|
|
||
|
/********************************************************/
|
||
|
void HungarianAlgorithm::step4(int* assignment, float* distMatrix, bool* starMatrix, bool* newStarMatrix, bool* primeMatrix, bool* coveredColumns, bool* coveredRows, int nOfRows, int nOfColumns, int minDim, int row, int col)
|
||
|
{
|
||
|
int n, starRow, starCol, primeRow, primeCol;
|
||
|
int nOfElements = nOfRows * nOfColumns;
|
||
|
|
||
|
/* generate temporary copy of starMatrix */
|
||
|
for (n = 0; n < nOfElements; n++)
|
||
|
newStarMatrix[n] = starMatrix[n];
|
||
|
|
||
|
/* star current zero */
|
||
|
newStarMatrix[row + nOfRows * col] = true;
|
||
|
|
||
|
/* find starred zero in current column */
|
||
|
starCol = col;
|
||
|
for (starRow = 0; starRow < nOfRows; starRow++)
|
||
|
if (starMatrix[starRow + nOfRows * starCol])
|
||
|
break;
|
||
|
|
||
|
while (starRow < nOfRows)
|
||
|
{
|
||
|
/* unstar the starred zero */
|
||
|
newStarMatrix[starRow + nOfRows * starCol] = false;
|
||
|
|
||
|
/* find primed zero in current row */
|
||
|
primeRow = starRow;
|
||
|
for (primeCol = 0; primeCol < nOfColumns; primeCol++)
|
||
|
if (primeMatrix[primeRow + nOfRows * primeCol])
|
||
|
break;
|
||
|
|
||
|
/* star the primed zero */
|
||
|
newStarMatrix[primeRow + nOfRows * primeCol] = true;
|
||
|
|
||
|
/* find starred zero in current column */
|
||
|
starCol = primeCol;
|
||
|
for (starRow = 0; starRow < nOfRows; starRow++)
|
||
|
if (starMatrix[starRow + nOfRows * starCol])
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* use temporary copy as new starMatrix */
|
||
|
/* delete all primes, uncover all rows */
|
||
|
for (n = 0; n < nOfElements; n++)
|
||
|
{
|
||
|
primeMatrix[n] = false;
|
||
|
starMatrix[n] = newStarMatrix[n];
|
||
|
}
|
||
|
for (n = 0; n < nOfRows; n++)
|
||
|
coveredRows[n] = false;
|
||
|
|
||
|
/* move to step 2a */
|
||
|
step2a(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
|
||
|
}
|
||
|
|
||
|
/********************************************************/
|
||
|
void HungarianAlgorithm::step5(int* assignment, float* distMatrix, bool* starMatrix, bool* newStarMatrix, bool* primeMatrix, bool* coveredColumns, bool* coveredRows, int nOfRows, int nOfColumns, int minDim)
|
||
|
{
|
||
|
float h, value;
|
||
|
int row, col;
|
||
|
|
||
|
/* find smallest uncovered element h */
|
||
|
h = DBL_MAX;
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
if (!coveredRows[row])
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
if (!coveredColumns[col])
|
||
|
{
|
||
|
value = distMatrix[row + nOfRows * col];
|
||
|
if (value < h)
|
||
|
h = value;
|
||
|
}
|
||
|
|
||
|
/* add h to each covered row */
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
if (coveredRows[row])
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
distMatrix[row + nOfRows * col] += h;
|
||
|
|
||
|
/* subtract h from each uncovered column */
|
||
|
for (col = 0; col < nOfColumns; col++)
|
||
|
if (!coveredColumns[col])
|
||
|
for (row = 0; row < nOfRows; row++)
|
||
|
distMatrix[row + nOfRows * col] -= h;
|
||
|
|
||
|
/* move to step 3 */
|
||
|
step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
|
||
|
}
|