readme
parent
c1ca6e3d1b
commit
0e6d01bc77
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
25
README.md
25
README.md
|
@ -0,0 +1,25 @@
|
|||
## Yolov5s+SORT(卡尔曼+匈牙利)
|
||||
|
||||
利用目标跟踪对检测框进行预测的技术,对目标检测任务进行加速,在yolov5检测的帧之间穿插使用卡尔曼滤波进行目标检测框的预测,减少对模型的调用,实现目标检测帧率提升的目的。
|
||||
|
||||
#### 代码运行环境:
|
||||
|
||||
| 开发环境 | Visual Studio 2022 |
|
||||
| -------- | -------------------- |
|
||||
| OpenCV | opencv-4.8.0-windows |
|
||||
| 调用模型 | YOLOv5s 6.0 |
|
||||
|
||||
|
||||
|
||||
#### 主要代码设置:
|
||||
|
||||
main.py中
|
||||
|
||||
![image-20241014170146823](C:\Users\FengHua\AppData\Roaming\Typora\typora-user-images\image-20241014170146823.png)
|
||||
|
||||
使用到的模型以及检测视频的路径。
|
||||
|
||||
![image-20241014170213505](C:\Users\FengHua\AppData\Roaming\Typora\typora-user-images\image-20241014170213505.png)
|
||||
|
||||
模型的调用频率设置,设置为3表示帧率为3的倍数时进行模型的目标检测,其他时候使用预测的目标框。
|
||||
|
BIN
images/test.mp4
BIN
images/test.mp4
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -11,7 +11,7 @@ using namespace cv::dnn;
|
|||
|
||||
int main()
|
||||
{
|
||||
string img_path = "D:/VS/yoloSORT/images/1.mp4";
|
||||
string img_path = "D:/VS/yoloSORT/images/test.mp4";
|
||||
string model_path = "D:/VS/yoloSORT/models/yolov5s.onnx";
|
||||
|
||||
// 创建Yolov5模型和跟踪器
|
||||
|
@ -43,7 +43,7 @@ int main()
|
|||
}
|
||||
|
||||
VideoWriter writer;
|
||||
writer = VideoWriter("D:/VS/yoloSORT/images/test.mp4", CAP_OPENCV_MJPEG, 20, Size(2560, 1440), true);
|
||||
writer = VideoWriter("D:/VS/yoloSORT/images/detect.mp4", CAP_OPENCV_MJPEG, 20, Size(2560, 1440), true);
|
||||
|
||||
clock_t start, end; //计时器
|
||||
start = clock();
|
||||
|
@ -149,3 +149,118 @@ int main()
|
|||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
#include "yolo.h"
|
||||
#include "kalmanboxtracker.h"
|
||||
#include <iostream>
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <vector>
|
||||
#include <time.h>
|
||||
#include "sort.h"
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
int main()
|
||||
{
|
||||
string img_path = "D:/VS/yoloTest/images/1.mp4";
|
||||
string model_path = "D:/VS/yoloTest/models/yolov5s.onnx";
|
||||
|
||||
// 创建Yolov5模型和跟踪器
|
||||
Yolov5 yolo;
|
||||
Net net;
|
||||
Sort mot_tracker = Sort(1, 3, 0.3); // 创建Sort跟踪器
|
||||
|
||||
// 读取Yolo模型
|
||||
if (!yolo.readModel(net, model_path, true)) {
|
||||
cout << "无法加载Yolo模型" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// 生成随机颜色
|
||||
srand(time(0));
|
||||
vector<Scalar> colors;
|
||||
for (int i = 0; i < 80; i++) {
|
||||
int b = rand() % 256;
|
||||
int g = rand() % 256;
|
||||
int r = rand() % 256;
|
||||
colors.push_back(Scalar(b, g, r));
|
||||
}
|
||||
|
||||
// 读取视频
|
||||
VideoCapture cap(img_path);
|
||||
if (!cap.isOpened()) {
|
||||
cout << "无法打开视频文件" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
VideoWriter writer;
|
||||
writer = VideoWriter("D:/VS/yoloTest/images/test.mp4", CAP_OPENCV_MJPEG, 20, Size(2560, 1440), true);
|
||||
|
||||
clock_t start, end; //计时器
|
||||
start = clock();
|
||||
int num = 0;
|
||||
|
||||
Mat frame;
|
||||
while (cap.read(frame)) {
|
||||
cap >> frame;
|
||||
|
||||
if (frame.empty()) {
|
||||
cout << "视频已结束" << endl;
|
||||
break;
|
||||
}
|
||||
// 进行目标检测
|
||||
vector<Output> result;
|
||||
if (yolo.Detect(frame, net, result)) {
|
||||
// 跟踪已检测到的目标
|
||||
vector<Rect> detection_rects; // 存储检测结果的矩形框
|
||||
for (int i = 0; i < result.size(); i++) {
|
||||
int x = result[i].box.x;
|
||||
int y = result[i].box.y;
|
||||
int w = result[i].box.width;
|
||||
int h = result[i].box.height;
|
||||
Rect rect(x, y, w, h);
|
||||
detection_rects.push_back(rect);
|
||||
}
|
||||
// 更新目标跟踪器
|
||||
vector<vector<float>> trackers = mot_tracker.update(detection_rects);//x,y,w,h,id
|
||||
// 绘制跟踪结果
|
||||
for (int i = 0; i < trackers.size(); i++) {
|
||||
Rect rect(trackers[i][0], trackers[i][1], trackers[i][2] - trackers[i][0], trackers[i][3] - trackers[i][1]);
|
||||
//cout << "0:" << trackers[i][0] << endl; //跟踪目标的 x 坐标(左上角的 x 坐标)。
|
||||
//cout << "1:" << trackers[i][1] << endl; //跟踪目标的 y 坐标(左上角的 y 坐标)。
|
||||
//cout << "2:" << trackers[i][2] << endl; //跟踪目标的宽度。
|
||||
//cout << "3:" << trackers[i][3] << endl; //跟踪目标的高度。
|
||||
//cout << "4:" << trackers[i][4] << endl; //跟踪目标的 ID。
|
||||
int id = static_cast<int>(trackers[i][4]);
|
||||
//cout << "id:" << id << endl;
|
||||
//string label = yolo.className[result[id].id] + ":" + to_string(result[id].confidence);
|
||||
rectangle(frame, rect, Scalar(0, 255, 0), 2);
|
||||
cout << trackers[i][5] << endl;
|
||||
putText(frame, "id:" + to_string(int(trackers[i][4])), Point(rect.x, rect.y), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
imshow("img", frame);
|
||||
writer << frame;
|
||||
if (waitKey(10) == 27) {
|
||||
break; // 退出循环
|
||||
}
|
||||
|
||||
num++;
|
||||
}
|
||||
|
||||
end = clock();
|
||||
cout << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl; //输出时间(单位:s)
|
||||
cout << "frame num: " << num << endl;
|
||||
cout << "Speed = " << double(end - start) * 1000 / CLOCKS_PER_SEC / num << "ms" << endl; //输出时间(单位:ms)
|
||||
|
||||
cap.release();
|
||||
destroyAllWindows();
|
||||
|
||||
return 0;
|
||||
}
|
||||
*/
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -76,8 +76,8 @@ D:\VS\yoloSORT\yoloSORT\main.cpp(111,40): warning C4244: [
|
|||
D:\VS\yoloSORT\yoloSORT\main.cpp(111,40): warning C4244: _Tp=int
|
||||
D:\VS\yoloSORT\yoloSORT\main.cpp(111,40): warning C4244: ]
|
||||
正在生成代码
|
||||
1 of 1116 functions (<0.1%) were compiled, the rest were copied from previous compilation.
|
||||
0 of 1116 functions ( 0.0%) were compiled, the rest were copied from previous compilation.
|
||||
0 functions were new in current compilation
|
||||
1 functions had inline decision re-evaluated but remain unchanged
|
||||
0 functions had inline decision re-evaluated but remain unchanged
|
||||
已完成代码的生成
|
||||
yoloSORT.vcxproj -> D:\VS\yoloSORT\x64\Release\yoloSORT.exe
|
||||
|
|
Binary file not shown.
Loading…
Reference in New Issue