#include #include #include #include #include #include #include #include "dirent.h" #include "NvInfer.h" #include "cuda_runtime_api.h" #include "logging.h" #include "BYTETracker.h" #define CHECK(status) \ do\ {\ auto ret = (status);\ if (ret != 0)\ {\ cerr << "Cuda failure: " << ret << endl;\ abort();\ }\ } while (0) #define DEVICE 0 // GPU id #define NMS_THRESH 0.7 #define BBOX_CONF_THRESH 0.1 using namespace nvinfer1; // stuff we know about the network and the input/output blobs static const int INPUT_W = 1088; static const int INPUT_H = 608; const char* INPUT_BLOB_NAME = "input_0"; const char* OUTPUT_BLOB_NAME = "output_0"; static Logger gLogger; Mat static_resize(Mat& img) { float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); // r = std::min(r, 1.0f); int unpad_w = r * img.cols; int unpad_h = r * img.rows; Mat re(unpad_h, unpad_w, CV_8UC3); resize(img, re, re.size()); Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114)); re.copyTo(out(Rect(0, 0, re.cols, re.rows))); return out; } struct GridAndStride { int grid0; int grid1; int stride; }; static void generate_grids_and_stride(const int target_w, const int target_h, vector& strides, vector& grid_strides) { for (auto stride : strides) { int num_grid_w = target_w / stride; int num_grid_h = target_h / stride; for (int g1 = 0; g1 < num_grid_h; g1++) { for (int g0 = 0; g0 < num_grid_w; g0++) { GridAndStride grid = { g0, g1, stride }; grid_strides.push_back(grid); } } } } static inline float intersection_area(const Object& a, const Object& b) { Rect_ inter = a.rect & b.rect; return inter.area(); } static void qsort_descent_inplace(vector& faceobjects, int left, int right) { int i = left; int j = right; float p = faceobjects[(left + right) / 2].prob; while (i <= j) { while (faceobjects[i].prob > p) i++; while (faceobjects[j].prob < p) j--; if (i <= j) { // swap swap(faceobjects[i], faceobjects[j]); i++; j--; } } #pragma omp parallel sections { #pragma omp section { if (left < j) qsort_descent_inplace(faceobjects, left, j); } #pragma omp section { if (i < right) qsort_descent_inplace(faceobjects, i, right); } } } static void qsort_descent_inplace(vector& objects) { if (objects.empty()) return; qsort_descent_inplace(objects, 0, objects.size() - 1); } static void nms_sorted_bboxes(const vector& faceobjects, vector& picked, float nms_threshold) { picked.clear(); const int n = faceobjects.size(); vector areas(n); for (int i = 0; i < n; i++) { areas[i] = faceobjects[i].rect.area(); } for (int i = 0; i < n; i++) { const Object& a = faceobjects[i]; int keep = 1; for (int j = 0; j < (int)picked.size(); j++) { const Object& b = faceobjects[picked[j]]; // intersection over union float inter_area = intersection_area(a, b); float union_area = areas[i] + areas[picked[j]] - inter_area; // float IoU = inter_area / union_area if (inter_area / union_area > nms_threshold) keep = 0; } if (keep) picked.push_back(i); } } static void generate_yolox_proposals(vector grid_strides, float* feat_blob, float prob_threshold, vector& objects) { const int num_class = 1; const int num_anchors = grid_strides.size(); for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) { const int grid0 = grid_strides[anchor_idx].grid0; const int grid1 = grid_strides[anchor_idx].grid1; const int stride = grid_strides[anchor_idx].stride; const int basic_pos = anchor_idx * (num_class + 5); // yolox/models/yolo_head.py decode logic float x_center = (feat_blob[basic_pos+0] + grid0) * stride; float y_center = (feat_blob[basic_pos+1] + grid1) * stride; float w = exp(feat_blob[basic_pos+2]) * stride; float h = exp(feat_blob[basic_pos+3]) * stride; float x0 = x_center - w * 0.5f; float y0 = y_center - h * 0.5f; float box_objectness = feat_blob[basic_pos+4]; for (int class_idx = 0; class_idx < num_class; class_idx++) { float box_cls_score = feat_blob[basic_pos + 5 + class_idx]; float box_prob = box_objectness * box_cls_score; if (box_prob > prob_threshold) { Object obj; obj.rect.x = x0; obj.rect.y = y0; obj.rect.width = w; obj.rect.height = h; obj.label = class_idx; obj.prob = box_prob; objects.push_back(obj); } } // class loop } // point anchor loop } float* blobFromImage(Mat& img){ cvtColor(img, img, COLOR_BGR2RGB); float* blob = new float[img.total()*3]; int channels = 3; int img_h = img.rows; int img_w = img.cols; vector mean = {0.485, 0.456, 0.406}; vector std = {0.229, 0.224, 0.225}; for (size_t c = 0; c < channels; c++) { for (size_t h = 0; h < img_h; h++) { for (size_t w = 0; w < img_w; w++) { blob[c * img_w * img_h + h * img_w + w] = (((float)img.at(h, w)[c]) / 255.0f - mean[c]) / std[c]; } } } return blob; } static void decode_outputs(float* prob, vector& objects, float scale, const int img_w, const int img_h) { vector proposals; vector strides = {8, 16, 32}; vector grid_strides; generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides); generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); //std::cout << "num of boxes before nms: " << proposals.size() << std::endl; qsort_descent_inplace(proposals); vector picked; nms_sorted_bboxes(proposals, picked, NMS_THRESH); int count = picked.size(); //std::cout << "num of boxes: " << count << std::endl; objects.resize(count); for (int i = 0; i < count; i++) { objects[i] = proposals[picked[i]]; // adjust offset to original unpadded float x0 = (objects[i].rect.x) / scale; float y0 = (objects[i].rect.y) / scale; float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; // clip // x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); // y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); // x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); // y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); objects[i].rect.x = x0; objects[i].rect.y = y0; objects[i].rect.width = x1 - x0; objects[i].rect.height = y1 - y0; } } const float color_list[80][3] = { {0.000, 0.447, 0.741}, {0.850, 0.325, 0.098}, {0.929, 0.694, 0.125}, {0.494, 0.184, 0.556}, {0.466, 0.674, 0.188}, {0.301, 0.745, 0.933}, {0.635, 0.078, 0.184}, {0.300, 0.300, 0.300}, {0.600, 0.600, 0.600}, {1.000, 0.000, 0.000}, {1.000, 0.500, 0.000}, {0.749, 0.749, 0.000}, {0.000, 1.000, 0.000}, {0.000, 0.000, 1.000}, {0.667, 0.000, 1.000}, {0.333, 0.333, 0.000}, {0.333, 0.667, 0.000}, {0.333, 1.000, 0.000}, {0.667, 0.333, 0.000}, {0.667, 0.667, 0.000}, {0.667, 1.000, 0.000}, {1.000, 0.333, 0.000}, {1.000, 0.667, 0.000}, {1.000, 1.000, 0.000}, {0.000, 0.333, 0.500}, {0.000, 0.667, 0.500}, {0.000, 1.000, 0.500}, {0.333, 0.000, 0.500}, {0.333, 0.333, 0.500}, {0.333, 0.667, 0.500}, {0.333, 1.000, 0.500}, {0.667, 0.000, 0.500}, {0.667, 0.333, 0.500}, {0.667, 0.667, 0.500}, {0.667, 1.000, 0.500}, {1.000, 0.000, 0.500}, {1.000, 0.333, 0.500}, {1.000, 0.667, 0.500}, {1.000, 1.000, 0.500}, {0.000, 0.333, 1.000}, {0.000, 0.667, 1.000}, {0.000, 1.000, 1.000}, {0.333, 0.000, 1.000}, {0.333, 0.333, 1.000}, {0.333, 0.667, 1.000}, {0.333, 1.000, 1.000}, {0.667, 0.000, 1.000}, {0.667, 0.333, 1.000}, {0.667, 0.667, 1.000}, {0.667, 1.000, 1.000}, {1.000, 0.000, 1.000}, {1.000, 0.333, 1.000}, {1.000, 0.667, 1.000}, {0.333, 0.000, 0.000}, {0.500, 0.000, 0.000}, {0.667, 0.000, 0.000}, {0.833, 0.000, 0.000}, {1.000, 0.000, 0.000}, {0.000, 0.167, 0.000}, {0.000, 0.333, 0.000}, {0.000, 0.500, 0.000}, {0.000, 0.667, 0.000}, {0.000, 0.833, 0.000}, {0.000, 1.000, 0.000}, {0.000, 0.000, 0.167}, {0.000, 0.000, 0.333}, {0.000, 0.000, 0.500}, {0.000, 0.000, 0.667}, {0.000, 0.000, 0.833}, {0.000, 0.000, 1.000}, {0.000, 0.000, 0.000}, {0.143, 0.143, 0.143}, {0.286, 0.286, 0.286}, {0.429, 0.429, 0.429}, {0.571, 0.571, 0.571}, {0.714, 0.714, 0.714}, {0.857, 0.857, 0.857}, {0.000, 0.447, 0.741}, {0.314, 0.717, 0.741}, {0.50, 0.5, 0} }; void doInference(IExecutionContext& context, float* input, float* output, const int output_size, Size input_shape) { const ICudaEngine& engine = context.getEngine(); // Pointers to input and output device buffers to pass to engine. // Engine requires exactly IEngine::getNbBindings() number of buffers. assert(engine.getNbBindings() == 2); void* buffers[2]; // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME); assert(engine.getBindingDataType(inputIndex) == nvinfer1::DataType::kFLOAT); const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME); assert(engine.getBindingDataType(outputIndex) == nvinfer1::DataType::kFLOAT); int mBatchSize = engine.getMaxBatchSize(); // Create GPU buffers on device CHECK(cudaMalloc(&buffers[inputIndex], 3 * input_shape.height * input_shape.width * sizeof(float))); CHECK(cudaMalloc(&buffers[outputIndex], output_size*sizeof(float))); // Create stream cudaStream_t stream; CHECK(cudaStreamCreate(&stream)); // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host CHECK(cudaMemcpyAsync(buffers[inputIndex], input, 3 * input_shape.height * input_shape.width * sizeof(float), cudaMemcpyHostToDevice, stream)); context.enqueue(1, buffers, stream, nullptr); CHECK(cudaMemcpyAsync(output, buffers[outputIndex], output_size * sizeof(float), cudaMemcpyDeviceToHost, stream)); cudaStreamSynchronize(stream); // Release stream and buffers cudaStreamDestroy(stream); CHECK(cudaFree(buffers[inputIndex])); CHECK(cudaFree(buffers[outputIndex])); } /* int main(int argc, char** argv) { cudaSetDevice(DEVICE); // create a model using the API directly and serialize it to a stream char *trtModelStream{nullptr}; size_t size{0}; if (argc == 4 && string(argv[2]) == "-i") { const string engine_file_path {argv[1]}; ifstream file(engine_file_path, ios::binary); if (file.good()) { file.seekg(0, file.end); size = file.tellg(); file.seekg(0, file.beg); trtModelStream = new char[size]; assert(trtModelStream); file.read(trtModelStream, size); file.close(); } } else { cerr << "arguments not right!" << endl; cerr << "run 'python3 tools/trt.py -f exps/example/mot/yolox_s_mix_det.py -c pretrained/bytetrack_s_mot17.pth.tar' to serialize model first!" << std::endl; cerr << "Then use the following command:" << endl; cerr << "cd demo/TensorRT/cpp/build" << endl; cerr << "./bytetrack ../../../../YOLOX_outputs/yolox_s_mix_det/model_trt.engine -i ../../../../videos/palace.mp4 // deserialize file and run inference" << std::endl; return -1; } const string input_video_path {argv[3]}; IRuntime* runtime = createInferRuntime(gLogger); assert(runtime != nullptr); ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); assert(engine != nullptr); IExecutionContext* context = engine->createExecutionContext(); assert(context != nullptr); delete[] trtModelStream; auto out_dims = engine->getBindingDimensions(1); auto output_size = 1; for(int j=0;j(cap.get(CAP_PROP_FRAME_COUNT)); cout << "Total frames: " << nFrame << endl; VideoWriter writer("demo.mp4", VideoWriter::fourcc('m', 'p', '4', 'v'), fps, Size(img_w, img_h)); Mat img; BYTETracker tracker(fps, 30); int num_frames = 0; int total_ms = 0; while (true) { if(!cap.read(img)) break; num_frames ++; if (num_frames % 20 == 0) { cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl; } if (img.empty()) break; Mat pr_img = static_resize(img); float* blob; blob = blobFromImage(pr_img); float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); // run inference auto start = chrono::system_clock::now(); doInference(*context, blob, prob, output_size, pr_img.size()); vector objects; decode_outputs(prob, objects, scale, img_w, img_h); vector output_stracks = tracker.update(objects); auto end = chrono::system_clock::now(); total_ms = total_ms + chrono::duration_cast(end - start).count(); for (int i = 0; i < output_stracks.size(); i++) { vector tlwh = output_stracks[i].tlwh; bool vertical = tlwh[2] / tlwh[3] > 1.6; if (tlwh[2] * tlwh[3] > 20 && !vertical) { Scalar s = tracker.get_color(output_stracks[i].track_id); putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA); rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2); } } putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()), Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA); writer.write(img); delete blob; char c = waitKey(1); if (c > 0) { break; } } cap.release(); cout << "FPS: " << num_frames * 1000000 / total_ms << endl; // destroy the engine context->destroy(); engine->destroy(); runtime->destroy(); return 0; } */