Yolo-Detection/yolo+ByteTrack/yoloTest/yolo.cpp

184 lines
6.0 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include"yolo.h"
using namespace std;
using namespace cv;
using namespace cv::dnn;
void Yolov5::LetterBox(const cv::Mat& image, cv::Mat& outImage, cv::Vec4d& params, const cv::Size& newShape,
bool autoShape, bool scaleFill, bool scaleUp, int stride, const cv::Scalar& color)
{
if (false) {
int maxLen = MAX(image.rows, image.cols);
outImage = Mat::zeros(Size(maxLen, maxLen), CV_8UC3);
image.copyTo(outImage(Rect(0, 0, image.cols, image.rows)));
params[0] = 1;
params[1] = 1;
params[3] = 0;
params[2] = 0;
}
cv::Size shape = image.size();
float r = std::min((float)newShape.height / (float)shape.height,
(float)newShape.width / (float)shape.width);
if (!scaleUp)
r = std::min(r, 1.0f);
float ratio[2]{ r, r };
int new_un_pad[2] = { (int)std::round((float)shape.width * r),(int)std::round((float)shape.height * r) };
auto dw = (float)(newShape.width - new_un_pad[0]);
auto dh = (float)(newShape.height - new_un_pad[1]);
if (autoShape)
{
dw = (float)((int)dw % stride);
dh = (float)((int)dh % stride);
}
else if (scaleFill)
{
dw = 0.0f;
dh = 0.0f;
new_un_pad[0] = newShape.width;
new_un_pad[1] = newShape.height;
ratio[0] = (float)newShape.width / (float)shape.width;
ratio[1] = (float)newShape.height / (float)shape.height;
}
dw /= 2.0f;
dh /= 2.0f;
if (shape.width != new_un_pad[0] && shape.height != new_un_pad[1])
{
cv::resize(image, outImage, cv::Size(new_un_pad[0], new_un_pad[1]));
}
else {
outImage = image.clone();
}
int top = int(std::round(dh - 0.1f));
int bottom = int(std::round(dh + 0.1f));
int left = int(std::round(dw - 0.1f));
int right = int(std::round(dw + 0.1f));
params[0] = ratio[0];
params[1] = ratio[1];
params[2] = left;
params[3] = top;
cv::copyMakeBorder(outImage, outImage, top, bottom, left, right, cv::BORDER_CONSTANT, color);
}
bool Yolov5::readModel(Net& net, string& netPath, bool isCuda = false) {
try {
net = readNet(netPath);
#if CV_VERSION_MAJOR==4 &&CV_VERSION_MINOR==7&&CV_VERSION_REVISION==0
net.enableWinograd(false); //bug of opencv4.7.x in AVX only platform ,https://github.com/opencv/opencv/pull/23112 and https://github.com/opencv/opencv/issues/23080
//net.enableWinograd(true); //If your CPU supports AVX2, you can set it true to speed up
#endif
}
catch (const std::exception&) {
return false;
}
//cuda
if (isCuda) {
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
}
//cpu
else {
net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
return true;
}
bool Yolov5::Detect(Mat& SrcImg, Net& net, vector<Output>& output) {
Mat blob;
int col = SrcImg.cols;
int row = SrcImg.rows;
int maxLen = MAX(col, row);
Mat netInputImg = SrcImg.clone();
Vec4d params;
LetterBox(SrcImg, netInputImg, params, cv::Size(_netWidth, _netHeight));
blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(0, 0, 0), true, false);
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>û<EFBFBD><C3BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>µ<EFBFBD><C2B5>ǽ<EFBFBD><C7BD><EFBFBD>ƫ<EFBFBD><C6AB><EFBFBD>ܴ󣬿<DCB4><F3A3ACBF>Գ<EFBFBD><D4B3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(104, 117, 123), true, false);
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(114, 114,114), true, false);
net.setInput(blob);
std::vector<cv::Mat> netOutputImg;
vector<string> outputLayerName{"345","403", "461","output" };
net.forward(netOutputImg, outputLayerName[3]); //<2F><>ȡoutput<75><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
//net.forward(netOutputImg, net.getUnconnectedOutLayersNames());
std::vector<int> classIds;//<2F><><EFBFBD><EFBFBD>id<69><64><EFBFBD><EFBFBD>
std::vector<float> confidences;//<2F><><EFBFBD><EFBFBD>ÿ<EFBFBD><C3BF>id<69><64>Ӧ<EFBFBD><D3A6><EFBFBD>Ŷ<EFBFBD><C5B6><EFBFBD><EFBFBD><EFBFBD>
std::vector<cv::Rect> boxes;//ÿ<><C3BF>id<69><64><EFBFBD>ο<EFBFBD>
int net_width = _className.size() + 5; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>+5
int net_out_width = netOutputImg[0].size[2];
assert(net_out_width == net_width, "Error Wrong number of _className"); //ģ<><C4A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ŀ<EFBFBD><C4BF><EFBFBD><EFBFBD>
float* pdata = (float*)netOutputImg[0].data;
int net_height = netOutputImg[0].size[1];
for (int r = 0; r < net_height; ++r) {
float box_score = pdata[4]; ;//<2F><>ȡÿһ<C3BF>е<EFBFBD>box<6F><78><EFBFBD>к<EFBFBD><D0BA><EFBFBD>ij<EFBFBD><C4B3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĸ<EFBFBD><C4B8><EFBFBD>
if (box_score >= _classThreshold) {
cv::Mat scores(1, _className.size(), CV_32FC1, pdata + 5);
Point classIdPoint;
double max_class_socre;
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre = max_class_socre * box_score;
if (max_class_socre >= _classThreshold) {
//rect [x,y,w,h]
float x = (pdata[0] - params[2]) / params[0];
float y = (pdata[1] - params[3]) / params[1];
float w = pdata[2] / params[0];
float h = pdata[3] / params[1];
int left = MAX(round(x - 0.5 * w + 0.5), 0);
int top = MAX(round(y - 0.5 * h + 0.5), 0);
classIds.push_back(classIdPoint.x);
confidences.push_back(max_class_socre);
boxes.push_back(Rect(left, top, int(w + 0.5), int(h + 0.5)));
}
}
pdata += net_width;//<2F><>һ<EFBFBD><D2BB>
}
//ִ<>з<EFBFBD><D0B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>нϵ<D0BD><CFB5><EFBFBD><EFBFBD>Ŷȵ<C5B6><C8B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ص<EFBFBD><D8B5><EFBFBD><EFBFBD><EFBFBD>NMS<4D><53>
vector<int> nms_result;
NMSBoxes(boxes, confidences, _classThreshold, _nmsThreshold, nms_result);
for (int i = 0; i < nms_result.size(); i++) {
int idx = nms_result[i];
Output result;
result.id = classIds[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
output.push_back(result);
}
if (output.size())
return true;
else
return false;
}
void Yolov5::drawPred(Mat& img, vector<Output> result, vector<Scalar> color) {
for (int i = 0; i < result.size(); i++) {
int left, top;
left = result[i].box.x;
top = result[i].box.y;
int color_num = i;
rectangle(img, result[i].box, color[result[i].id], 2, 8);
string label = _className[result[i].id] + ":" + to_string(result[i].confidence);
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
}
//imshow("1", img);
//imwrite("out.bmp", img);
//waitKey();
//destroyAllWindows();
}