YOLOv3-model-pruning/config/yolov3-ds-person.cfg

1037 lines
11 KiB
INI
Raw Normal View History

2024-06-25 14:07:50 +08:00
[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=16
subdivisions=1
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
# 0
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# 1
# Downsample
# res1模块一个CBL加上一个残差连接一个残差连接包括两个CBL
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
# 2
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
# 3
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
# 4
[shortcut]
from=-3
activation=linear
# 5
# Downsample
# res2模块一个CBL加上两个残差连接
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
# 6
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
# 7
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
# 8
[shortcut]
from=-3
activation=linear
# 9
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
# 10
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
# 11
[shortcut]
from=-3
activation=linear
# 12
# Downsample
# 第三个res模块res8一个CBL加上8个残差连接
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
# 13
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 14
# 在res8中将每个残差连接的第二个CBL模块的卷积变为深度可分离卷积
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 14
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 15
[shortcut]
#from=-3 普通卷积变成了深度可分离卷积,多了一层
from=-3
activation=linear
# 16
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 17
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 17
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 18
[shortcut]
from=-3
activation=linear
# 19
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 20
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 20
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 21
[shortcut]
from=-3
activation=linear
# 22
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 23
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 23
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 24
[shortcut]
from=-3
activation=linear
# 25
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 26
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 26
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 27
[shortcut]
from=-3
activation=linear
# 28
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 29
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 29
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 30
[shortcut]
from=-3
activation=linear
# 31
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 32
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 32
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 33
[shortcut]
from=-3
activation=linear
# 34
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 35
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 35
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 36
[shortcut]
from=-3
activation=linear
# Downsample
# 第四个res模块res8
# 37
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
# 38
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 39
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 39
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 40
[shortcut]
from=-3
activation=linear
# 41
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 42
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 42
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 43
[shortcut]
from=-3
activation=linear
# 44
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 45
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 45
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 46
[shortcut]
from=-3
activation=linear
# 47
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 48
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 48
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 49
[shortcut]
from=-3
activation=linear
# 50
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 51
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 51
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 52
[shortcut]
from=-3
activation=linear
# 53
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 54
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 54
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 55
[shortcut]
from=-3
activation=linear
# 56
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 57
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 57
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 57
[shortcut]
from=-3
activation=linear
# 58
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 59
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 59
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 60
[shortcut]
from=-3
activation=linear
# Downsample
# 第五个res模块res4
# 61
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
# 62
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 63
# [convolutional]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 63
[ds_conv]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 64
[shortcut]
from=-3
activation=linear
# 65
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 66
# [convolutional]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 66
[ds_conv]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 67
[shortcut]
from=-3
activation=linear
# 68
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 69
# [convolutional]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 69
[ds_conv]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 70
[shortcut]
from=-3
activation=linear
# 71
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 72
# [convolutional]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 72
[ds_conv]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 73
[shortcut]
from=-3
activation=linear
######################
# 74
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 75
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
# 76
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 77
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
# 78
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 79
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
# 80
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1