117 lines
4.4 KiB
Python
117 lines
4.4 KiB
Python
|
from __future__ import division
|
||
|
|
||
|
from models import *
|
||
|
from utils.utils import *
|
||
|
from utils.datasets import *
|
||
|
from utils.parse_config import *
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
import time
|
||
|
import datetime
|
||
|
import argparse
|
||
|
import tqdm
|
||
|
|
||
|
import torch
|
||
|
from torch.utils.data import DataLoader
|
||
|
from torchvision import datasets
|
||
|
from torchvision import transforms
|
||
|
from torch.autograd import Variable
|
||
|
import torch.optim as optim
|
||
|
import time
|
||
|
|
||
|
|
||
|
def evaluate(model, path, iou_thres, conf_thres, nms_thres, img_size, batch_size):
|
||
|
model.eval()
|
||
|
|
||
|
# Get dataloader
|
||
|
dataset = ListDataset(path, img_size=img_size, augment=False, multiscale=False)
|
||
|
dataloader = torch.utils.data.DataLoader(
|
||
|
dataset, batch_size=batch_size, shuffle=False, num_workers=1, collate_fn=dataset.collate_fn
|
||
|
)
|
||
|
|
||
|
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
|
||
|
|
||
|
labels = []
|
||
|
sample_metrics = [] # List of tuples (TP, confs, pred)
|
||
|
for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc="Detecting objects")):
|
||
|
|
||
|
# Extract labels
|
||
|
labels += targets[:, 1].tolist()
|
||
|
# Rescale target
|
||
|
targets[:, 2:] = xywh2xyxy(targets[:, 2:])
|
||
|
targets[:, 2:] *= img_size
|
||
|
|
||
|
imgs = dataset.resize_imgs(imgs)
|
||
|
imgs = Variable(imgs.type(Tensor), requires_grad=False)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
outputs = model(imgs)
|
||
|
outputs = non_max_suppression(outputs, conf_thres=conf_thres, nms_thres=nms_thres)
|
||
|
|
||
|
sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=iou_thres)
|
||
|
|
||
|
# Concatenate sample statistics
|
||
|
assert sample_metrics != []
|
||
|
true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))]
|
||
|
precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels)
|
||
|
|
||
|
return precision, recall, AP, f1, ap_class
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--batch_size", type=int, default=8, help="size of each image batch")
|
||
|
parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file")
|
||
|
parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file")
|
||
|
parser.add_argument("--weights_path", type=str, default="weights/yolov3.weights", help="path to weights file")
|
||
|
parser.add_argument("--class_path", type=str, default="data/coco.names", help="path to class label file")
|
||
|
parser.add_argument("--iou_thres", type=float, default=0.5, help="iou threshold required to qualify as detected")
|
||
|
parser.add_argument("--conf_thres", type=float, default=0.001, help="object confidence threshold")
|
||
|
parser.add_argument("--nms_thres", type=float, default=0.5, help="iou thresshold for non-maximum suppression")
|
||
|
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
|
||
|
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
|
||
|
opt = parser.parse_args()
|
||
|
print(opt)
|
||
|
|
||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
|
||
|
data_config = parse_data_config(opt.data_config)
|
||
|
valid_path = data_config["valid"]
|
||
|
class_names = load_classes(data_config["names"])
|
||
|
|
||
|
# Initiate model
|
||
|
model = Darknet(opt.model_def).to(device)
|
||
|
if opt.weights_path.endswith(".weights"):
|
||
|
# Load darknet weights
|
||
|
model.load_darknet_weights(opt.weights_path)
|
||
|
else:
|
||
|
# Load checkpoint weights
|
||
|
model.load_state_dict(torch.load(opt.weights_path))
|
||
|
|
||
|
print("Compute mAP...")
|
||
|
|
||
|
precision, recall, AP, f1, ap_class = evaluate(
|
||
|
model,
|
||
|
path=valid_path,
|
||
|
iou_thres=opt.iou_thres,
|
||
|
conf_thres=opt.conf_thres,
|
||
|
nms_thres=opt.nms_thres,
|
||
|
img_size=opt.img_size,
|
||
|
batch_size=8,
|
||
|
)
|
||
|
|
||
|
obtain_num_parameters = lambda model:sum([param.nelement() for param in model.parameters()])
|
||
|
parameters = obtain_num_parameters(model)
|
||
|
print("Parameters : ", f"{parameters}")
|
||
|
|
||
|
print("Average Precisions:")
|
||
|
for i, c in enumerate(ap_class):
|
||
|
print(f"+ Class '{c}' ({class_names[c]}) - AP: {AP[i]}")
|
||
|
print(f"+ Class '{c}' ({class_names[c]}) - precision: {precision[i]}")
|
||
|
print(f"+ Class '{c}' ({class_names[c]}) - recall: {recall[i]}")
|
||
|
print(f"+ Class '{c}' ({class_names[c]}) - f1: {f1[i]}")
|
||
|
|
||
|
|
||
|
print(f"mAP: {AP.mean()}")
|