[net] # Testing #batch=1 #subdivisions=1 # Training batch=16 subdivisions=1 width=416 height=416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 500200 policy=steps steps=400000,450000 scales=.1,.1 # 0 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky # 1 # Downsample # res1模块,一个CBL加上一个残差连接(一个残差连接包括两个CBL) [convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 activation=leaky # 2 [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=leaky # 3 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky # 4 [shortcut] from=-3 activation=linear # 5 # Downsample # res2模块,一个CBL加上两个残差连接 [convolutional] batch_normalize=1 filters=128 size=3 stride=2 pad=1 activation=leaky # 6 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky # 7 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky # 8 [shortcut] from=-3 activation=linear # 9 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky # 10 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky # 11 [shortcut] from=-3 activation=linear # 12 # Downsample # 第三个res模块,res8,一个CBL加上8个残差连接 [convolutional] batch_normalize=1 filters=256 size=3 stride=2 pad=1 activation=leaky # 13 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 14 # 在res8中,将每个残差连接的第二个CBL模块的卷积变为深度可分离卷积 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 14 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 15 [shortcut] #from=-3 普通卷积变成了深度可分离卷积,多了一层 from=-3 activation=linear # 16 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 17 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 17 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 18 [shortcut] from=-3 activation=linear # 19 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 20 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 20 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 21 [shortcut] from=-3 activation=linear # 22 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 23 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 23 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 24 [shortcut] from=-3 activation=linear # 25 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 26 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 26 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 27 [shortcut] from=-3 activation=linear # 28 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 29 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 29 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 30 [shortcut] from=-3 activation=linear # 31 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 32 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 32 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 33 [shortcut] from=-3 activation=linear # 34 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 35 # [convolutional] # batch_normalize=1 # filters=256 # size=3 # stride=1 # pad=1 # activation=leaky # 35 [ds_conv] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 36 [shortcut] from=-3 activation=linear # Downsample # 第四个res模块,res8 # 37 [convolutional] batch_normalize=1 filters=512 size=3 stride=2 pad=1 activation=leaky # 38 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 39 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 39 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 40 [shortcut] from=-3 activation=linear # 41 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 42 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 42 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 43 [shortcut] from=-3 activation=linear # 44 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 45 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 45 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 46 [shortcut] from=-3 activation=linear # 47 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 48 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 48 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 49 [shortcut] from=-3 activation=linear # 50 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 51 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 51 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 52 [shortcut] from=-3 activation=linear # 53 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 54 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 54 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 55 [shortcut] from=-3 activation=linear # 56 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 57 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 57 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 57 [shortcut] from=-3 activation=linear # 58 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 59 # [convolutional] # batch_normalize=1 # filters=512 # size=3 # stride=1 # pad=1 # activation=leaky # 59 [ds_conv] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 60 [shortcut] from=-3 activation=linear # Downsample # 第五个res模块,res4 # 61 [convolutional] batch_normalize=1 filters=1024 size=3 stride=2 pad=1 activation=leaky # 62 [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky # 63 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky # 63 # [ds_conv] # batch_normalize=1 # filters=1024 # size=3 # stride=1 # pad=1 # activation=leaky # 64 [shortcut] from=-3 activation=linear # 65 [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky # 66 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky # 66 # [ds_conv] # batch_normalize=1 # filters=1024 # size=3 # stride=1 # pad=1 # activation=leaky # 67 [shortcut] from=-3 activation=linear # 68 [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky # 69 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky # 69 # [ds_conv] # batch_normalize=1 # filters=1024 # size=3 # stride=1 # pad=1 # activation=leaky # 70 [shortcut] from=-3 activation=linear # 71 [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky # 72 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky # 72 # [ds_conv] # batch_normalize=1 # filters=1024 # size=3 # stride=1 # pad=1 # activation=leaky # 73 [shortcut] from=-3 activation=linear ###################### # 74 [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky # 75 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky # 76 [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky # 77 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky # 78 [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky # 79 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky # 80 [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 6,7,8 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=1 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 61 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 3,4,5 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=1 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 36 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 0,1,2 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=1 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1