1037 lines
11 KiB
INI
1037 lines
11 KiB
INI
|
||
[net]
|
||
# Testing
|
||
#batch=1
|
||
#subdivisions=1
|
||
# Training
|
||
batch=16
|
||
subdivisions=1
|
||
width=416
|
||
height=416
|
||
channels=3
|
||
momentum=0.9
|
||
decay=0.0005
|
||
angle=0
|
||
saturation = 1.5
|
||
exposure = 1.5
|
||
hue=.1
|
||
|
||
learning_rate=0.001
|
||
burn_in=1000
|
||
max_batches = 500200
|
||
policy=steps
|
||
steps=400000,450000
|
||
scales=.1,.1
|
||
|
||
# 0
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=32
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 1
|
||
# Downsample
|
||
# res1模块,一个CBL加上一个残差连接(一个残差连接包括两个CBL)
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=64
|
||
size=3
|
||
stride=2
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 2
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=32
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 3
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=64
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 4
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 5
|
||
# Downsample
|
||
# res2模块,一个CBL加上两个残差连接
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=3
|
||
stride=2
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 6
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=64
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 7
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 8
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 9
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=64
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 10
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 11
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 12
|
||
# Downsample
|
||
# 第三个res模块,res8,一个CBL加上8个残差连接
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=2
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 13
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 14
|
||
# 在res8中,将每个残差连接的第二个CBL模块的卷积变为深度可分离卷积
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 14
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 15
|
||
[shortcut]
|
||
#from=-3 普通卷积变成了深度可分离卷积,多了一层
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 16
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 17
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 17
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 18
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 19
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 20
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 20
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 21
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 22
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 23
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 23
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 24
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 25
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 26
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 26
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 27
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 28
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 29
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 29
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 30
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 31
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 32
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 32
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 33
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 34
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 35
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=256
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 35
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 36
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# Downsample
|
||
# 第四个res模块,res8
|
||
|
||
# 37
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=2
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 38
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 39
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 39
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 40
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 41
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 42
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 42
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 43
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 44
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 45
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 45
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 46
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 47
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 48
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 48
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 49
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 50
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 51
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 51
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 52
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 53
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 54
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 54
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 55
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 56
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 57
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 57
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 57
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 58
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 59
|
||
# [convolutional]
|
||
# batch_normalize=1
|
||
# filters=512
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
# 59
|
||
[ds_conv]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 60
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# Downsample
|
||
# 第五个res模块,res4
|
||
|
||
# 61
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=1024
|
||
size=3
|
||
stride=2
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 62
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 63
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=1024
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
# 63
|
||
# [ds_conv]
|
||
# batch_normalize=1
|
||
# filters=1024
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 64
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 65
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 66
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=1024
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
# 66
|
||
# [ds_conv]
|
||
# batch_normalize=1
|
||
# filters=1024
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 67
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 68
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 69
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=1024
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
# 69
|
||
# [ds_conv]
|
||
# batch_normalize=1
|
||
# filters=1024
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 70
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
# 71
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 72
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=1024
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
# 72
|
||
# [ds_conv]
|
||
# batch_normalize=1
|
||
# filters=1024
|
||
# size=3
|
||
# stride=1
|
||
# pad=1
|
||
# activation=leaky
|
||
|
||
# 73
|
||
[shortcut]
|
||
from=-3
|
||
activation=linear
|
||
|
||
######################
|
||
|
||
# 74
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 75
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=1024
|
||
activation=leaky
|
||
|
||
# 76
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 77
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=1024
|
||
activation=leaky
|
||
|
||
# 78
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=512
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
# 79
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=1024
|
||
activation=leaky
|
||
|
||
# 80
|
||
[convolutional]
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
filters=18
|
||
activation=linear
|
||
|
||
|
||
[yolo]
|
||
mask = 6,7,8
|
||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||
classes=1
|
||
num=9
|
||
jitter=.3
|
||
ignore_thresh = .7
|
||
truth_thresh = 1
|
||
random=1
|
||
|
||
|
||
[route]
|
||
layers = -4
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[upsample]
|
||
stride=2
|
||
|
||
[route]
|
||
layers = -1, 61
|
||
|
||
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=512
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=512
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=256
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=512
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
filters=18
|
||
activation=linear
|
||
|
||
|
||
[yolo]
|
||
mask = 3,4,5
|
||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||
classes=1
|
||
num=9
|
||
jitter=.3
|
||
ignore_thresh = .7
|
||
truth_thresh = 1
|
||
random=1
|
||
|
||
|
||
|
||
[route]
|
||
layers = -4
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[upsample]
|
||
stride=2
|
||
|
||
[route]
|
||
layers = -1, 36
|
||
|
||
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=256
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=256
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
filters=128
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
batch_normalize=1
|
||
size=3
|
||
stride=1
|
||
pad=1
|
||
filters=256
|
||
activation=leaky
|
||
|
||
[convolutional]
|
||
size=1
|
||
stride=1
|
||
pad=1
|
||
filters=18
|
||
activation=linear
|
||
|
||
|
||
[yolo]
|
||
mask = 0,1,2
|
||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||
classes=1
|
||
num=9
|
||
jitter=.3
|
||
ignore_thresh = .7
|
||
truth_thresh = 1
|
||
random=1
|
||
|