YOLOv3-model-pruning/config/yolov3-ds8-person.cfg

1037 lines
11 KiB
INI
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=16
subdivisions=1
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
# 0
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# 1
# Downsample
# res1模块一个CBL加上一个残差连接一个残差连接包括两个CBL
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
# 2
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
# 3
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
# 4
[shortcut]
from=-3
activation=linear
# 5
# Downsample
# res2模块一个CBL加上两个残差连接
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
# 6
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
# 7
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
# 8
[shortcut]
from=-3
activation=linear
# 9
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
# 10
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
# 11
[shortcut]
from=-3
activation=linear
# 12
# Downsample
# 第三个res模块res8一个CBL加上8个残差连接
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
# 13
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 14
# 在res8中将每个残差连接的第二个CBL模块的卷积变为深度可分离卷积
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 14
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 15
[shortcut]
#from=-3 普通卷积变成了深度可分离卷积,多了一层
from=-3
activation=linear
# 16
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 17
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 17
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 18
[shortcut]
from=-3
activation=linear
# 19
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 20
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 20
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 21
[shortcut]
from=-3
activation=linear
# 22
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 23
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 23
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 24
[shortcut]
from=-3
activation=linear
# 25
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 26
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 26
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 27
[shortcut]
from=-3
activation=linear
# 28
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 29
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 29
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 30
[shortcut]
from=-3
activation=linear
# 31
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 32
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 32
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 33
[shortcut]
from=-3
activation=linear
# 34
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
# 35
# [convolutional]
# batch_normalize=1
# filters=256
# size=3
# stride=1
# pad=1
# activation=leaky
# 35
[ds_conv]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
# 36
[shortcut]
from=-3
activation=linear
# Downsample
# 第四个res模块res8
# 37
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
# 38
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 39
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 39
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 40
[shortcut]
from=-3
activation=linear
# 41
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 42
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 42
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 43
[shortcut]
from=-3
activation=linear
# 44
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 45
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 45
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 46
[shortcut]
from=-3
activation=linear
# 47
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 48
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 48
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 49
[shortcut]
from=-3
activation=linear
# 50
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 51
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 51
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 52
[shortcut]
from=-3
activation=linear
# 53
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 54
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 54
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 55
[shortcut]
from=-3
activation=linear
# 56
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 57
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 57
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 57
[shortcut]
from=-3
activation=linear
# 58
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
# 59
# [convolutional]
# batch_normalize=1
# filters=512
# size=3
# stride=1
# pad=1
# activation=leaky
# 59
[ds_conv]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
# 60
[shortcut]
from=-3
activation=linear
# Downsample
# 第五个res模块res4
# 61
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
# 62
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 63
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 63
# [ds_conv]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 64
[shortcut]
from=-3
activation=linear
# 65
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 66
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 66
# [ds_conv]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 67
[shortcut]
from=-3
activation=linear
# 68
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 69
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 69
# [ds_conv]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 70
[shortcut]
from=-3
activation=linear
# 71
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 72
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
# 72
# [ds_conv]
# batch_normalize=1
# filters=1024
# size=3
# stride=1
# pad=1
# activation=leaky
# 73
[shortcut]
from=-3
activation=linear
######################
# 74
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 75
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
# 76
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 77
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
# 78
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
# 79
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
# 80
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1