76 lines
1.9 KiB
Python
76 lines
1.9 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
# @file name : common_tools.py
|
||
|
# @author : Peter
|
||
|
# @date : 2020-02-03 14:10:00
|
||
|
# @brief : 通用函数
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import random
|
||
|
import torchvision.transforms as transforms
|
||
|
from PIL import Image
|
||
|
|
||
|
|
||
|
def transform_invert(img_, transform_train):
|
||
|
"""
|
||
|
将data 进行反transfrom操作
|
||
|
:param img_: tensor
|
||
|
:param transform_train: torchvision.transforms
|
||
|
:return: PIL image
|
||
|
"""
|
||
|
if 'Normalize' in str(transform_train):
|
||
|
norm_transform = list(filter(lambda x: isinstance(x, transforms.Normalize), transform_train.transforms))
|
||
|
mean = torch.tensor(norm_transform[0].mean, dtype=img_.dtype, device=img_.device)
|
||
|
std = torch.tensor(norm_transform[0].std, dtype=img_.dtype, device=img_.device)
|
||
|
img_.mul_(std[:, None, None]).add_(mean[:, None, None])
|
||
|
|
||
|
img_ = img_.transpose(0, 2).transpose(0, 1) # C*H*W --> H*W*C
|
||
|
if 'ToTensor' in str(transform_train):
|
||
|
# img_ = np.array(img_) * 255
|
||
|
img_ = img_.detach().numpy() * 255
|
||
|
|
||
|
if img_.shape[2] == 3:
|
||
|
img_ = Image.fromarray(img_.astype('uint8')).convert('RGB')
|
||
|
elif img_.shape[2] == 1:
|
||
|
img_ = Image.fromarray(img_.astype('uint8').squeeze())
|
||
|
else:
|
||
|
raise Exception("Invalid img shape, expected 1 or 3 in axis 2, but got {}!".format(img_.shape[2]) )
|
||
|
|
||
|
return img_
|
||
|
|
||
|
|
||
|
def set_seed(seed):
|
||
|
"""
|
||
|
进行随机种子的设置
|
||
|
:param seed: 种子数
|
||
|
:return: 无
|
||
|
"""
|
||
|
random.seed(seed)
|
||
|
np.random.seed(seed)
|
||
|
torch.manual_seed(seed)
|
||
|
torch.cuda.manual_seed(seed)
|
||
|
|
||
|
|
||
|
def rand_crop(data, label, img_w, img_h):
|
||
|
width1 = random.randint(0, data.size[0] - img_w)
|
||
|
height1 = random.randint(0, data.size[1] - img_h)
|
||
|
width2 = width1 + img_w
|
||
|
height2 = height1 + img_h
|
||
|
|
||
|
data = data.crop((width1, height1, width2, height2))
|
||
|
label = label.crop((width1, height1, width2, height2))
|
||
|
|
||
|
return data, label
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|