algorithm_system_server/algorithm/helmet_detection.py

93 lines
3.0 KiB
Python
Raw Permalink Normal View History

2024-06-21 10:06:54 +08:00
import datetime
import os
import time
import ffmpeg
import torch
import cv2
import numpy as np
from multiprocessing import Process, Manager
from threading import Thread
from read_data import LoadImages, LoadStreams
import torch.backends.cudnn as cudnn
class HelmetDetection():
time_reference = datetime.datetime.now()
counter_frame = 0
processed_fps = 0
def __init__(self,video_path=None):
self.model = torch.hub.load((os.getcwd()) + "/algorithm/yolov5", 'custom', source='local', path='./weight/helmet.pt', force_reload=True)
self.classes = self.model.names
self.frame = [None]
if video_path is not None:
self.video_name = video_path
else:
self.video_name = 'vid2.mp4' # A default video file
self.dataset = LoadImages(self.video_name)
self.flag = 0
def use_webcam(self, source):
# self.dataset.release() # Release any existing video capture
#self.cap = cv2.VideoCapture(0) # Open default webcam
# print('use_webcam')
source = source
self.imgsz = 640
cudnn.benchmark = True
self.dataset = LoadStreams(source, img_size=self.imgsz)
self.flag = 1
def class_to_label(self, x):
return self.classes[int(x)]
def get_frame(self):
for im0s in self.dataset:
# print(self.dataset.mode)
# print(self.dataset)
if self.dataset.mode == 'stream':
img = im0s[0].copy()
else:
img = im0s.copy()
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
results = self.model(img, size=640)
# print(results)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# Loop through each detected object and count the people
num_people = 0
bgr = (0, 255, 0)
txt = ""
objs = results.xyxy[0]
for c in objs[:,-1].unique():
n = (objs[:,-1] == c).sum() # detections per class
txt += f"{n} {self.classes[int(c)]}{'s' * (n > 1)}, " # add to string
for obj in objs:
if obj[-1] == 1: # 1 is the class ID for '未戴头盔'
# Draw bounding boxes around people
xmin, ymin, xmax, ymax = map(int, obj[:4])
accuracy = obj[4]
if (accuracy > 0.2):
num_people += 1
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
cv2.putText(img, f" {round(float(accuracy), 2)}", (xmin, ymin),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
# Draw the number of people on the frame and display it
ret, jpeg = cv2.imencode(".jpg", img)
# print(jpeg.shape)
return jpeg.tobytes(), txt