170 lines
7.6 KiB
Python
170 lines
7.6 KiB
Python
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
"""
|
||
|
Run YOLOv5 benchmarks on all supported export formats
|
||
|
|
||
|
Format | `export.py --include` | Model
|
||
|
--- | --- | ---
|
||
|
PyTorch | - | yolov5s.pt
|
||
|
TorchScript | `torchscript` | yolov5s.torchscript
|
||
|
ONNX | `onnx` | yolov5s.onnx
|
||
|
OpenVINO | `openvino` | yolov5s_openvino_model/
|
||
|
TensorRT | `engine` | yolov5s.engine
|
||
|
CoreML | `coreml` | yolov5s.mlmodel
|
||
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
||
|
TensorFlow GraphDef | `pb` | yolov5s.pb
|
||
|
TensorFlow Lite | `tflite` | yolov5s.tflite
|
||
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
||
|
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
||
|
|
||
|
Requirements:
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||
|
|
||
|
Usage:
|
||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import platform
|
||
|
import sys
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
|
||
|
import pandas as pd
|
||
|
|
||
|
FILE = Path(__file__).resolve()
|
||
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||
|
if str(ROOT) not in sys.path:
|
||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
|
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||
|
|
||
|
import export
|
||
|
from models.experimental import attempt_load
|
||
|
from models.yolo import SegmentationModel
|
||
|
from segment.val import run as val_seg
|
||
|
from utils import notebook_init
|
||
|
from utils.general import LOGGER, check_yaml, file_size, print_args
|
||
|
from utils.torch_utils import select_device
|
||
|
from val import run as val_det
|
||
|
|
||
|
|
||
|
def run(
|
||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||
|
imgsz=640, # inference size (pixels)
|
||
|
batch_size=1, # batch size
|
||
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
|
half=False, # use FP16 half-precision inference
|
||
|
test=False, # test exports only
|
||
|
pt_only=False, # test PyTorch only
|
||
|
hard_fail=False, # throw error on benchmark failure
|
||
|
):
|
||
|
y, t = [], time.time()
|
||
|
device = select_device(device)
|
||
|
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
|
||
|
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
||
|
try:
|
||
|
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
||
|
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
||
|
if 'cpu' in device.type:
|
||
|
assert cpu, 'inference not supported on CPU'
|
||
|
if 'cuda' in device.type:
|
||
|
assert gpu, 'inference not supported on GPU'
|
||
|
|
||
|
# Export
|
||
|
if f == '-':
|
||
|
w = weights # PyTorch format
|
||
|
else:
|
||
|
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
||
|
assert suffix in str(w), 'export failed'
|
||
|
|
||
|
# Validate
|
||
|
if model_type == SegmentationModel:
|
||
|
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
||
|
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
|
||
|
else: # DetectionModel:
|
||
|
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
||
|
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
|
||
|
speed = result[2][1] # times (preprocess, inference, postprocess)
|
||
|
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
|
||
|
except Exception as e:
|
||
|
if hard_fail:
|
||
|
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
||
|
LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
|
||
|
y.append([name, None, None, None]) # mAP, t_inference
|
||
|
if pt_only and i == 0:
|
||
|
break # break after PyTorch
|
||
|
|
||
|
# Print results
|
||
|
LOGGER.info('\n')
|
||
|
parse_opt()
|
||
|
notebook_init() # print system info
|
||
|
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
|
||
|
py = pd.DataFrame(y, columns=c)
|
||
|
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
||
|
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
||
|
if hard_fail and isinstance(hard_fail, str):
|
||
|
metrics = py['mAP50-95'].array # values to compare to floor
|
||
|
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||
|
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
|
||
|
return py
|
||
|
|
||
|
|
||
|
def test(
|
||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||
|
imgsz=640, # inference size (pixels)
|
||
|
batch_size=1, # batch size
|
||
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
|
half=False, # use FP16 half-precision inference
|
||
|
test=False, # test exports only
|
||
|
pt_only=False, # test PyTorch only
|
||
|
hard_fail=False, # throw error on benchmark failure
|
||
|
):
|
||
|
y, t = [], time.time()
|
||
|
device = select_device(device)
|
||
|
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
||
|
try:
|
||
|
w = weights if f == '-' else \
|
||
|
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
||
|
assert suffix in str(w), 'export failed'
|
||
|
y.append([name, True])
|
||
|
except Exception:
|
||
|
y.append([name, False]) # mAP, t_inference
|
||
|
|
||
|
# Print results
|
||
|
LOGGER.info('\n')
|
||
|
parse_opt()
|
||
|
notebook_init() # print system info
|
||
|
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
||
|
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
||
|
LOGGER.info(str(py))
|
||
|
return py
|
||
|
|
||
|
|
||
|
def parse_opt():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||
|
parser.add_argument('--test', action='store_true', help='test exports only')
|
||
|
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
|
||
|
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
|
||
|
opt = parser.parse_args()
|
||
|
opt.data = check_yaml(opt.data) # check YAML
|
||
|
print_args(vars(opt))
|
||
|
return opt
|
||
|
|
||
|
|
||
|
def main(opt):
|
||
|
test(**vars(opt)) if opt.test else run(**vars(opt))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
opt = parse_opt()
|
||
|
main(opt)
|