algorithm_system_server/algorithm/easyocr.py

82 lines
2.3 KiB
Python
Raw Normal View History

2024-06-21 10:06:54 +08:00
import datetime
import os
import time
import ffmpeg
import torch
import cv2
import numpy as np
from multiprocessing import Process, Manager
from threading import Thread
from read_data import LoadImages, LoadStreams
import torch.backends.cudnn as cudnn
import easyocr
from tools.draw_chinese import cv2ImgAddText
class OCR():
time_reference = datetime.datetime.now()
counter_frame = 0
processed_fps = 0
def __init__(self,video_path=None):
self.model = easyocr.Reader(['ch_sim','en'], gpu=True, model_storage_directory="weight/ocr/",download_enabled=False) # this needs to run only once to load the model into memory
self.frame = [None]
if video_path is not None:
self.video_name = video_path
else:
self.video_name = 'vid2.mp4' # A default video file
self.dataset = LoadImages(self.video_name)
self.flag = 0
def use_webcam(self, source):
# self.dataset.release() # Release any existing video capture
# self.cap = cv2.VideoCapture(0) # Open default webcam
# print('use_webcam')
source = source
self.imgsz = 640
cudnn.benchmark = True
self.dataset = LoadStreams(source, img_size=self.imgsz)
def class_to_label(self, x):
return self.classes[int(x)]
def get_frame(self):
for im0s in self.dataset:
# print(self.dataset.mode)
# print(self.dataset)
if self.dataset.mode == 'stream':
img = im0s[0].copy()
else:
img = im0s.copy()
result = self.model.readtext(img, detail = 0)
img = cv2ImgAddText(img,
f'识别结果: {result}',
10,
10,
(0, 250, 0),
20,)
# cv2.putText(img, f'识别结果: {result}', (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
txt = f'{result}'
ret, jpeg = cv2.imencode(".jpg", img)
# print(jpeg.shape)
return jpeg.tobytes(), txt
def time_synchronized():
# pytorch-accurate time
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()