algorithm_system_server/algorithm/face_recognition/face_recognition copy.py

251 lines
12 KiB
Python
Raw Normal View History

2024-06-21 10:06:54 +08:00
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# 摄像头实时人脸识别 / Real-time face detection and recognition
import dlib
import numpy as np
import cv2
import pandas as pd
import os
import time
import logging
from PIL import Image, ImageDraw, ImageFont
from read_data import LoadImages, LoadStreams
import torch.backends.cudnn as cudnn
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('algorithm/face_recognition/data/data_dlib/shape_predictor_68_face_landmarks.dat')
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("algorithm/face_recognition/data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer():
def __init__(self, video_path = None, model=None):
self.face_feature_known_list = [] # 用来存放所有录入人脸特征的数组 / Save the features of faces in database
self.face_name_known_list = [] # 存储录入人脸名字 / Save the name of faces in database
self.current_frame_face_cnt = 0 # 存储当前摄像头中捕获到的人脸数 / Counter for faces in current frame
self.current_frame_face_feature_list = [] # 存储当前摄像头中捕获到的人脸特征 / Features of faces in current frame
self.current_frame_face_name_list = [] # 存储当前摄像头中捕获到的所有人脸的名字 / Names of faces in current frame
self.current_frame_face_name_position_list = [] # 存储当前摄像头中捕获到的所有人脸的名字坐标 / Positions of faces in current frame
# Update FPS
self.fps = 0 # FPS of current frame
self.fps_show = 0 # FPS per second
self.frame_start_time = 0
self.frame_cnt = 0
self.start_time = time.time()
self.font = cv2.FONT_ITALIC
self.font_chinese = ImageFont.truetype("simsun.ttc", 30)
if video_path is not None:
self.video_name = video_path
else:
self.video_name = 'vid2.mp4' # A default video file
self.dataset = LoadImages(self.video_name)
self.face_detector = model
self.get_face_database()
def use_webcam(self, source):
source = source
cudnn.benchmark = True
self.dataset = LoadStreams(source)
# 从 "features_all.csv" 读取录入人脸特征 / Read known faces from "features_all.csv"
def get_face_database(self):
if os.path.exists("algorithm/face_recognition/data/features_all.csv"):
path_features_known_csv = "algorithm/face_recognition/data/features_all.csv"
csv_rd = pd.read_csv(path_features_known_csv, header=None)
for i in range(csv_rd.shape[0]):
features_someone_arr = []
self.face_name_known_list.append(csv_rd.iloc[i][0])
for j in range(1, 129):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.face_feature_known_list.append(features_someone_arr)
logging.info("Faces in Database%d", len(self.face_feature_known_list))
return 1
else:
logging.warning("'features_all.csv' not found!")
logging.warning("Please run 'get_faces_from_camera.py' "
"and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'")
return 0
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
@staticmethod
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
feature_2 = np.array(feature_2)
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
return dist
def update_fps(self):
now = time.time()
# 每秒刷新 fps / Refresh fps per second
if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
self.fps_show = self.fps
self.start_time = now
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
# 生成的 cv2 window 上面添加说明文字 / PutText on cv2 window
def draw_note(self, img_rd):
cv2.putText(img_rd, "Face Recognizer", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Frame: " + str(self.frame_cnt), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps_show.__round__(2)), (20, 130), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.current_frame_face_cnt), (20, 160), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
def draw_name(self, img_rd):
# 在人脸框下面写人脸名字 / Write names under rectangle
img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
for i in range(self.current_frame_face_cnt):
# cv2.putText(img_rd, self.current_frame_face_name_list[i], self.current_frame_face_name_position_list[i], self.font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
draw.text(xy=self.current_frame_face_name_position_list[i], text=str(self.current_frame_face_name_list[i]), font=self.font_chinese,
fill=(255, 255, 0))
img_rd = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
return img_rd
# 修改显示人名 / Show names in chinese
def show_chinese_name(self):
# Default known name: person_1, person_2, person_3
if self.current_frame_face_cnt >= 1:
# 修改录入的人脸姓名 / Modify names in face_name_known_list to chinese name
self.face_name_known_list[0] = '张三'.encode('utf-8').decode()
# self.face_name_known_list[1] = '张四'.encode('utf-8').decode()
def detect_faces(self, img):
results = self.face_detector(img)
face_results = dlib.rectangles()
for obj in results.xyxy[0]:
if obj[-1] == 0: # 0 is the class ID for 'person'
# Draw bounding boxes around people
xmin, ymin, xmax, ymax = map(int, obj[:4])
xmin, ymin, xmax, ymax = convert_to_square(xmin, ymin, xmax, ymax)
if xmax <= xmin or ymax <= ymin:
continue
rectangle = dlib.rectangle(xmin, ymin, xmax, ymax)
face_results.append(rectangle)
return face_results
# 处理获取的视频流,进行人脸识别 / Face detection and recognition from input video stream
def get_frame(self):
# 1. 读取存放所有人脸特征的 csv / Read known faces from "features.all.csv"
if self.get_face_database():
self.frame_cnt += 1
logging.debug("Frame %d starts", self.frame_cnt)
for im0s in self.dataset:
if self.dataset.mode == 'stream':
img_rd = im0s[0].copy()
else:
img_rd = im0s.copy()
faces = self.detect_faces(img_rd)
self.draw_note(img_rd)
self.current_frame_face_feature_list = []
self.current_frame_face_cnt = 0
self.current_frame_face_name_position_list = []
self.current_frame_face_name_list = []
# 2. 检测到人脸 / Face detected in current frame
if len(faces) != 0:
# 3. 获取当前捕获到的图像的所有人脸的特征 / Compute the face descriptors for faces in current frame
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
print(face_reco_model.compute_face_descriptor(img_rd, shape))
self.current_frame_face_feature_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
# 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
logging.info("For face %d in camera:", k+1)
# 先默认所有人不认识,是 unknown / Set the default names of faces with "unknown"
self.current_frame_face_name_list.append("unknown")
# 每个捕获人脸的名字坐标 / Positions of faces captured
self.current_frame_face_name_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 5. 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
current_frame_e_distance_list = []
for i in range(len(self.face_feature_known_list)):
# 如果 person_X 数据不为空
if str(self.face_feature_known_list[i][0]) != '0.0':
e_distance_tmp = self.return_euclidean_distance(self.current_frame_face_feature_list[k],
self.face_feature_known_list[i])
logging.info(" With person %s, the e-distance is %f", str(i + 1), e_distance_tmp)
current_frame_e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
current_frame_e_distance_list.append(999999999)
# 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e-distance
similar_person_num = current_frame_e_distance_list.index(min(current_frame_e_distance_list))
logging.info("Minimum e-distance with %s: %f", self.face_name_known_list[similar_person_num], min(current_frame_e_distance_list))
if min(current_frame_e_distance_list) < 0.4:
self.current_frame_face_name_list[k] = self.face_name_known_list[similar_person_num]
logging.info("Face recognition result: %s", self.face_name_known_list[similar_person_num])
else:
logging.info("Face recognition result: Unknown person")
logging.info("\n")
# 矩形框 / Draw rectangle
for kk, d in enumerate(faces):
# 绘制矩形框
# print(kk,d)
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
(0, 255, 0), 2)
self.update_fps()
self.current_frame_face_cnt = len(faces)
img_rd = self.draw_name(img_rd)
else:
img_with_name = img_rd
ret, jpeg = cv2.imencode(".jpg", img_rd)
return jpeg.tobytes()
def convert_to_square(xmin, ymin, xmax, ymax):
# convert to square location
center_x = (xmin + xmax) // 2
center_y = (ymin + ymax) // 2
square_length = ((xmax - xmin) + (ymax - ymin)) // 2 // 2
square_length *= 1.1
xmin = int(center_x - square_length)
ymin = int(center_y - square_length)
xmax = int(center_x + square_length)
ymax = int(center_y + square_length)
return xmin, ymin, xmax, ymax