# -*- coding: UTF-8 -*- import argparse import time import os import cv2 import torch from numpy import random import copy import numpy as np from models.experimental import attempt_load from utils.datasets import letterbox from utils.general import check_img_size, non_max_suppression_face, scale_coords from utils.torch_utils import time_synchronized from utils.cv_puttext import cv2ImgAddText from plate_recognition.plate_rec import get_plate_result,allFilePath,cv_imread from plate_recognition.double_plate_split_merge import get_split_merge clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)] def load_model(weights, device): model = attempt_load(weights, map_location=device) # load FP32 model return model def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2, 4, 6]] -= pad[0] # x padding coords[:, [1, 3, 5, 7]] -= pad[1] # y padding coords[:, :10] /= gain #clip_coords(coords, img0_shape) coords[:, 0].clamp_(0, img0_shape[1]) # x1 coords[:, 1].clamp_(0, img0_shape[0]) # y1 coords[:, 2].clamp_(0, img0_shape[1]) # x2 coords[:, 3].clamp_(0, img0_shape[0]) # y2 coords[:, 4].clamp_(0, img0_shape[1]) # x3 coords[:, 5].clamp_(0, img0_shape[0]) # y3 coords[:, 6].clamp_(0, img0_shape[1]) # x4 coords[:, 7].clamp_(0, img0_shape[0]) # y4 # coords[:, 8].clamp_(0, img0_shape[1]) # x5 # coords[:, 9].clamp_(0, img0_shape[0]) # y5 return coords def get_plate_rec_landmark(img, xyxy, conf, landmarks, class_num,device): h,w,c = img.shape result_dict={} tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness x1 = int(xyxy[0]) y1 = int(xyxy[1]) x2 = int(xyxy[2]) y2 = int(xyxy[3]) landmarks_np=np.zeros((4,2)) rect=[x1,y1,x2,y2] for i in range(4): point_x = int(landmarks[2 * i]) point_y = int(landmarks[2 * i + 1]) landmarks_np[i]=np.array([point_x,point_y]) class_label= int(class_num) #车牌的的类型0代表单牌,1代表双层车牌 result_dict['rect']=rect result_dict['landmarks']=landmarks_np.tolist() result_dict['class']=class_label return result_dict def detect_plate(model, orgimg, device,img_size): # Load model # img_size = opt_img_size conf_thres = 0.3 iou_thres = 0.5 dict_list=[] # orgimg = cv2.imread(image_path) # BGR img0 = copy.deepcopy(orgimg) assert orgimg is not None, 'Image Not Found ' h0, w0 = orgimg.shape[:2] # orig hw r = img_size / max(h0, w0) # resize image to img_size if r != 1: # always resize down, only resize up if training with augmentation interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp) imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size img = letterbox(img0, new_shape=imgsz)[0] # img =process_data(img0) # Convert img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416 # Run inference t0 = time.time() img = torch.from_numpy(img).to(device) img = img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img)[0] t2=time_synchronized() # print(f"infer time is {(t2-t1)*1000} ms") # Apply NMS pred = non_max_suppression_face(pred, conf_thres, iou_thres) # print('img.shape: ', img.shape) # print('orgimg.shape: ', orgimg.shape) # Process detections for i, det in enumerate(pred): # detections per image if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class det[:, 5:13] = scale_coords_landmarks(img.shape[2:], det[:, 5:13], orgimg.shape).round() for j in range(det.size()[0]): xyxy = det[j, :4].view(-1).tolist() conf = det[j, 4].cpu().numpy() landmarks = det[j, 5:13].view(-1).tolist() class_num = det[j, 13].cpu().numpy() result_dict = get_plate_rec_landmark(orgimg, xyxy, conf, landmarks, class_num,device) dict_list.append(result_dict) return dict_list # cv2.imwrite('result.jpg', orgimg) def draw_result(orgimg,dict_list): result_str ="" for result in dict_list: rect_area = result['rect'] x,y,w,h = rect_area[0],rect_area[1],rect_area[2]-rect_area[0],rect_area[3]-rect_area[1] padding_w = 0.05*w padding_h = 0.11*h rect_area[0]=max(0,int(x-padding_w)) rect_area[1]=max(0,int(y-padding_h)) rect_area[2]=min(orgimg.shape[1],int(rect_area[2]+padding_w)) rect_area[3]=min(orgimg.shape[0],int(rect_area[3]+padding_h)) landmarks=result['landmarks'] label=result['class'] # result_str+=result+" " for i in range(4): #关键点 cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1) cv2.rectangle(orgimg,(rect_area[0],rect_area[1]),(rect_area[2],rect_area[3]),clors[label],2) #画框 cv2.putText(img,str(label),(rect_area[0],rect_area[1]),cv2.FONT_HERSHEY_SIMPLEX,0.5,clors[label],2) # orgimg=cv2ImgAddText(orgimg,label,rect_area[0]-height_area,rect_area[1]-height_area-10,(0,255,0),height_area) # print(result_str) return orgimg if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--detect_model', nargs='+', type=str, default='weights/detect.pt', help='model.pt path(s)') #检测模型 parser.add_argument('--image_path', type=str, default='imgs', help='source') parser.add_argument('--img_size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--output', type=str, default='result1', help='source') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device =torch.device("cpu") opt = parser.parse_args() print(opt) save_path = opt.output count=0 if not os.path.exists(save_path): os.mkdir(save_path) detect_model = load_model(opt.detect_model, device) #初始化检测模型 time_all = 0 time_begin=time.time() if not os.path.isfile(opt.image_path): #目录 file_list=[] allFilePath(opt.image_path,file_list) for img_path in file_list: print(count,img_path) time_b = time.time() img =cv_imread(img_path) if img is None: continue if img.shape[-1]==4: img=cv2.cvtColor(img,cv2.COLOR_BGRA2BGR) # detect_one(model,img_path,device) dict_list=detect_plate(detect_model, img, device,opt.img_size) ori_img=draw_result(img,dict_list) img_name = os.path.basename(img_path) save_img_path = os.path.join(save_path,img_name) time_e=time.time() time_gap = time_e-time_b if count: time_all+=time_gap cv2.imwrite(save_img_path,ori_img) count+=1 else: #单个图片 print(count,opt.image_path,end=" ") img =cv_imread(opt.image_path) if img.shape[-1]==4: img=cv2.cvtColor(img,cv2.COLOR_BGRA2BGR) # detect_one(model,img_path,device) dict_list=detect_plate(detect_model, img, device,opt.img_size) ori_img=draw_result(img,dict_list) img_name = os.path.basename(opt.image_path) save_img_path = os.path.join(save_path,img_name) cv2.imwrite(save_img_path,ori_img) print(f"sumTime time is {time.time()-time_begin} s, average pic time is {time_all/(len(file_list)-1)}")