import torch from torch import nn class DoubleConv(nn.Module): def __init__(self, in_ch, out_ch): super(DoubleConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, input): return self.conv(input) class Unet(nn.Module): def __init__(self, in_ch, out_ch): super(Unet, self).__init__() self.conv1 = DoubleConv(in_ch, 64) self.pool1 = nn.MaxPool2d(2) self.conv2 = DoubleConv(64, 128) self.pool2 = nn.MaxPool2d(2) self.conv3 = DoubleConv(128, 256) self.pool3 = nn.MaxPool2d(2) self.conv4 = DoubleConv(256, 512) self.pool4 = nn.MaxPool2d(2) self.conv5 = DoubleConv(512, 1024) self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2) self.conv6 = DoubleConv(1024, 512) self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2) self.conv7 = DoubleConv(512, 256) self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2) self.conv8 = DoubleConv(256, 128) self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2) self.conv9 = DoubleConv(128, 64) self.conv10 = nn.Conv2d(64, out_ch, 1) self.dropout = nn.Dropout(p=0.2) def forward(self, x): c1 = self.conv1(x) p1 = self.pool1(c1) p1 = self.dropout(p1) c2 = self.conv2(p1) p2 = self.pool2(c2) p2 = self.dropout(p2) c3 = self.conv3(p2) p3 = self.pool3(c3) p3 = self.dropout(p3) c4 = self.conv4(p3) p4 = self.pool4(c4) p4 = self.dropout(p4) c5 = self.conv5(p4) up_6 = self.up6(c5) merge6 = torch.cat([up_6, c4], dim=1) merge6 = self.dropout(merge6) c6 = self.conv6(merge6) up_7 = self.up7(c6) merge7 = torch.cat([up_7, c3], dim=1) merge7 = self.dropout(merge7) c7 = self.conv7(merge7) up_8 = self.up8(c7) merge8 = torch.cat([up_8, c2], dim=1) merge8 = self.dropout(merge8) c8 = self.conv8(merge8) up_9 = self.up9(c8) merge9 = torch.cat([up_9, c1], dim=1) merge9 = self.dropout(merge9) c9 = self.conv9(merge9) c10 = self.conv10(c9) # out = nn.Sigmoid()(c10) return c10