import argparse import os import platform import sys from pathlib import Path import cv2 import torch import torch.backends.cudnn as cudnn import datetime from tools.draw_chinese import cv2ImgAddText from read_data import LoadImages, LoadStreams class TrafficLogoDetection(): time_reference = datetime.datetime.now() counter_frame = 0 processed_fps = 0 def __init__(self,video_path=None): self.model = torch.hub.load((os.getcwd()) + "/algorithm/yolov5", 'custom', source='local', path='./weight/traffic/traffic_logo.pt', force_reload=True) self.classes = self.model.names self.frame = [None] if video_path is not None: self.video_name = video_path else: self.video_name = 'vid2.mp4' # A default video file self.dataset = LoadImages(self.video_name) self.flag = 0 def use_webcam(self, source): # self.dataset.release() # Release any existing video capture # self.cap = cv2.VideoCapture(0) # Open default webcam # print('use_webcam') self.source = source cudnn.benchmark = True # self.dataset = LoadStreams(source, img_size=self.imgsz) self.dataset = LoadStreams(source) def class_to_label(self, x): return self.classes[int(x)] def get_frame(self): i = 0 for im0s in self.dataset: # print(self.dataset.mode) # print(self.dataset) if self.dataset.mode == 'stream': img = im0s[0].copy() else: img = im0s.copy() img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) results = self.model(img, size=640) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Loop through each detected object and count the people accuracy = 0 num_problem = len(results.xyxy[0]) bgr = (0, 255, 0) for obj in results.xyxy[0]: xmin, ymin, xmax, ymax = map(int, obj[:4]) accuracy = obj[4] c = int(obj[-1]) color = (255, 200, 90) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) img = cv2ImgAddText(img, f'{self.classes[c]}', xmax + 2, ymin - 1, (0, 250, 0), 20,) # cv2.putText(img, f"{self.classes[c]}, {round(float(accuracy), 2)}", (xmin, ymin), # cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) ret, jpeg = cv2.imencode(".jpg", img) resText=f'正在进行车标检测' # print(num_people) i = i+1 return jpeg.tobytes(), resText