import datetime import os import time import ffmpeg import torch import cv2 import numpy as np from multiprocessing import Process, Manager from threading import Thread from read_data import LoadImages, LoadStreams import torch.backends.cudnn as cudnn class ElectromobileDetection(): time_reference = datetime.datetime.now() counter_frame = 0 processed_fps = 0 def __init__(self,video_path=None): self.model = torch.hub.load((os.getcwd()) + "/algorithm/yolov5", 'custom', source='local', path='./weight/electromobile.pt', force_reload=True) self.classes = ["电动车", "摩托车"] self.frame = [None] if video_path is not None: self.video_name = video_path else: self.video_name = 'vid2.mp4' # A default video file self.dataset = LoadImages(self.video_name) self.flag = 0 def use_webcam(self, source): # self.dataset.release() # Release any existing video capture #self.cap = cv2.VideoCapture(0) # Open default webcam # print('use_webcam') source = source self.imgsz = 640 cudnn.benchmark = True self.dataset = LoadStreams(source, img_size=self.imgsz) self.flag = 1 def class_to_label(self, x): return self.classes[int(x)] def get_frame(self): for im0s in self.dataset: # print(self.dataset.mode) # print(self.dataset) if self.dataset.mode == 'stream': img = im0s[0].copy() else: img = im0s.copy() img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) results = self.model(img, size=640) # print(results) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Loop through each detected object and count the people num_people = 0 bgr = (0, 255, 0) txt = "" objs = results.xyxy[0] for c in objs[:,-1].unique(): n = (objs[:,-1] == c).sum() # detections per class txt += f"{n} {self.classes[int(c)]}{'s' * (n > 1)}, " # add to string for obj in objs: if obj[-1] == 0: # 1 is the class ID for '未戴头盔' # Draw bounding boxes around people xmin, ymin, xmax, ymax = map(int, obj[:4]) accuracy = obj[4] if (accuracy > 0.2): cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2) cv2.putText(img, f" {round(float(accuracy), 2)}", (xmin, ymin), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) elif obj[-1] == 1: # 1 is the class ID for '未戴头盔' # Draw bounding boxes around people xmin, ymin, xmax, ymax = map(int, obj[:4]) accuracy = obj[4] if (accuracy > 0.2): cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2) cv2.putText(img, f" {round(float(accuracy), 2)}", (xmin, ymin), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) # Draw the number of people on the frame and display it ret, jpeg = cv2.imencode(".jpg", img) # print(jpeg.shape) return jpeg.tobytes(), txt