# import random # import os # trainval_percent = 0.9 # train_percent = 0.9 # xmlfilepath = '/home/ykn/dataset/PCB_DATASET/Annotationss' # txtsavepath = '/home/ykn/dataset/PCB_DATASET/ImageSets' # total_xml = os.listdir(xmlfilepath) # num = len(total_xml) # list = range(num) # tv = int(num * trainval_percent) # tr = int(tv * train_percent) # trainval = random.sample(list, tv) # train = random.sample(trainval, tr) # ftrainval = open(txtsavepath+'/trainval.txt', 'w') # ftest = open(txtsavepath+'/test.txt', 'w') # ftrain = open(txtsavepath+'/train.txt', 'w') # fval = open(txtsavepath+'/val.txt', 'w') # for i in list: # name = total_xml[i][:-4] + '\n' # if i in trainval: # ftrainval.write(name) # if i in train: # ftrain.write(name) # else: # fval.write(name) # else: # ftest.write(name) # ftrainval.close() # ftrain.close() # fval.close() # ftest.close() # xml解析包 import xml.etree.ElementTree as ET import pickle import os # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表 from os import listdir, getcwd from os.path import join sets = ['train', 'test', 'val'] classes = ['missing_hole', 'mouse_bite', 'open_circuit', 'short', 'spur', 'spurious_copper'] label_path = '/home/ykn/dataset/PCB_DATASET/labels' ImageSets = '/home/ykn/dataset/PCB_DATASET/ImageSets' images = '/home/ykn/dataset/PCB_DATASET/images' # 进行归一化操作 def convert(size, box): # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax) dw = 1./size[0] # 1/w dh = 1./size[1] # 1/h x = (box[0] + box[1])/2.0 # 物体在图中的中心点x坐标 y = (box[2] + box[3])/2.0 # 物体在图中的中心点y坐标 w = box[1] - box[0] # 物体实际像素宽度 h = box[3] - box[2] # 物体实际像素高度 x = x*dw # 物体中心点x的坐标比(相当于 x/原图w) w = w*dw # 物体宽度的宽度比(相当于 w/原图w) y = y*dh # 物体中心点y的坐标比(相当于 y/原图h) h = h*dh # 物体宽度的宽度比(相当于 h/原图h) return (x, y, w, h) # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1] # year ='2012', 对应图片的id(文件名) def convert_annotation(image_id): ''' 将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息, 通过对其解析,然后进行归一化最终读到label文件中去,也就是说 一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去 labal文件中的格式:calss x y w h  同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个 ''' # 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件 in_file = open('/home/ykn/dataset/PCB_DATASET/Annotations /%s.xml' % (image_id), encoding='utf-8') # 准备在对应的image_id 中写入对应的label,分别为 # out_file = open(label_path+'/%s.txt' % (image_id), 'w', encoding='utf-8') # 解析xml文件 tree = ET.parse(in_file) # 获得对应的键值对 root = tree.getroot() # 获得图片的尺寸大小 size = root.find('size') # 如果xml内的标记为空,增加判断条件 if size != None: # 获得宽 w = int(size.find('width').text) # 获得高 h = int(size.find('height').text) # 遍历目标obj for obj in root.iter('object'): # 获得difficult ?? difficult = obj.find('difficult').text # 获得类别 =string 类型 cls = obj.find('name').text # 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过 if cls not in classes or int(difficult) == 1: continue # 通过类别名称找到id cls_id = classes.index(cls) # 找到bndbox 对象 xmlbox = obj.find('bndbox') # 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax'] b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) print(image_id, cls, b) # 带入进行归一化操作 # w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax'] bb = convert((w, h), b) # bb 对应的是归一化后的(x,y,w,h) # 生成 calss x y w h 在label文件中 out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') # 返回当前工作目录 wd = getcwd() print(wd) for image_set in sets: ''' 对所有的文件数据集进行遍历 做了两个工作:     1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位     2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去      最后再通过直接读取文件,就能找到对应的label 信息 ''' # 先找labels文件夹如果不存在则创建 if not os.path.exists(label_path): os.makedirs(label_path+'/') # 读取在ImageSets/Main 中的train、test..等文件的内容 # 包含对应的文件名称 image_ids = open(ImageSets+'/%s.txt' % (image_set)).read().strip().split() # 打开对应的2012_train.txt 文件对其进行写入准备 list_file = open('/home/ykn/dataset/PCB_DATASET/%s.txt' % (image_set), 'w') # 将对应的文件_id以及全路径写进去并换行 for image_id in image_ids: list_file.write(images+'/%s.jpg\n' % (image_id)) # 调用 year = 年份 image_id = 对应的文件名_id convert_annotation(image_id) # 关闭文件 list_file.close() # os.system(‘comand’) 会执行括号中的命令,如果命令成功执行,这条语句返回0,否则返回1 # os.system("cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt > train.txt") # os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")