algorithm_system_server/algorithm/Car_recognition/car_detection.py

287 lines
11 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# -*- coding: UTF-8 -*-
import argparse
import time
import os
import cv2
import torch
from numpy import random
import copy
import numpy as np
from algorithm.Car_recognition.plate_recognition.plate_rec import get_plate_result,allFilePath,init_model,cv_imread
# from plate_recognition.plate_cls import cv_imread
from algorithm.Car_recognition.plate_recognition.double_plate_split_merge import get_split_merge
from algorithm.Car_recognition.plate_recognition.color_rec import plate_color_rec,init_color_model
from algorithm.Car_recognition.car_recognition.car_rec import init_car_rec_model,get_color_and_score
from algorithm.Car_recognition.utils.datasets import letterbox
from algorithm.Car_recognition.utils.general import check_img_size, non_max_suppression_face, scale_coords
from algorithm.Car_recognition.utils.cv_puttext import cv2ImgAddText
from read_data import LoadImages, LoadStreams
import torch.backends.cudnn as cudnn
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
danger=['','']
object_color=[(0,255,255),(0,255,0),(255,255,0)]
class_type=['单层车牌','双层车牌','汽车']
class CarDetection():
def __init__(self, video_path=None):
# self.detect_model = detect_model
# self.plate_rec_model = plate_rec_model
# self.car_rec_model = car_rec_model
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.detect_model =torch.load('weight/traffic/best.pt', map_location=self.device)['model'].float().fuse()
# self.detect_model = load_model((os.getcwd()) + "/weight/traffic/detect.pt") #初始化检测模型
self.plate_rec_model= init_model((os.getcwd()) + "/weight/traffic/plate_rec_color.pth") #初始化识别模型
self.car_rec_model = init_car_rec_model((os.getcwd()) + "/weight/traffic/car_rec_color.pth") #初始化车辆识别模型
time_all = 0
time_begin=time.time()
# self.frame = [None]
if video_path is not None:
self.video_name = video_path
else:
self.video_name = 'vid2.mp4' # A default video file
self.imgsz = 384
self.dataset = LoadImages(self.video_name,self.imgsz)
def use_webcam(self, source):
source = source
cudnn.benchmark = True
self.dataset = LoadStreams(source, img_size=self.imgsz)
def get_frame(self):
for im0s in self.dataset:
# print(self.dataset.mode)
# print(self.dataset)
if self.dataset.mode == 'stream':
img = im0s[0].copy()
else:
img = im0s.copy()
dict_list=detect_Recognition_plate(self.detect_model, img, self.device, self.plate_rec_model, car_rec_model=self.car_rec_model)
ori_img=draw_result(img,dict_list)
ret, jpeg = cv2.imencode(".jpg", ori_img)
txt = str(dict_list)
return jpeg.tobytes(), txt
def order_points(pts): #四个点安好左上 右上 右下 左下排列
rect = np.zeros((4, 2), dtype = "float32")
s = pts.sum(axis = 1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis = 1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts): #透视变换得到车牌小图
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None): #返回到原图坐标
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2, 4, 6]] -= pad[0] # x padding
coords[:, [1, 3, 5, 7]] -= pad[1] # y padding
coords[:, :8] /= gain
#clip_coords(coords, img0_shape)
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
coords[:, 4].clamp_(0, img0_shape[1]) # x3
coords[:, 5].clamp_(0, img0_shape[0]) # y3
coords[:, 6].clamp_(0, img0_shape[1]) # x4
coords[:, 7].clamp_(0, img0_shape[0]) # y4
# coords[:, 8].clamp_(0, img0_shape[1]) # x5
# coords[:, 9].clamp_(0, img0_shape[0]) # y5
return coords
def get_plate_rec_landmark(img, xyxy, conf, landmarks, class_num,device,plate_rec_model,car_rec_model):
h,w,c = img.shape
result_dict={}
x1 = int(xyxy[0])
y1 = int(xyxy[1])
x2 = int(xyxy[2])
y2 = int(xyxy[3])
landmarks_np=np.zeros((4,2))
rect=[x1,y1,x2,y2]
if int(class_num) ==2:
car_roi_img = img[y1:y2,x1:x2]
car_color,color_conf=get_color_and_score(car_rec_model,car_roi_img,device)
result_dict['class_type']=class_type[int(class_num)]
result_dict['rect']=rect #车辆roi
result_dict['score']=conf #车牌区域检测得分
result_dict['object_no']=int(class_num)
result_dict['car_color']=car_color
result_dict['color_conf']=color_conf
return result_dict
for i in range(4):
point_x = int(landmarks[2 * i])
point_y = int(landmarks[2 * i + 1])
landmarks_np[i]=np.array([point_x,point_y])
class_label= int(class_num) #车牌的的类型0代表单牌1代表双层车牌
roi_img = four_point_transform(img,landmarks_np) #透视变换得到车牌小图
if class_label: #判断是否是双层车牌,是双牌的话进行分割后然后拼接
roi_img=get_split_merge(roi_img)
plate_number ,plate_color= get_plate_result(roi_img,device,plate_rec_model) #对车牌小图进行识别,得到颜色和车牌号
for dan in danger: #只要出现‘危’或者‘险’就是危险品车牌
if dan in plate_number:
plate_number='危险品'
# cv2.imwrite("roi.jpg",roi_img)
result_dict['class_type']=class_type[class_label]
result_dict['rect']=rect #车牌roi区域
result_dict['landmarks']=landmarks_np.tolist() #车牌角点坐标
result_dict['plate_no']=plate_number #车牌号
result_dict['roi_height']=roi_img.shape[0] #车牌高度
result_dict['plate_color']=plate_color #车牌颜色
result_dict['object_no']=class_label #单双层 0单层 1双层
result_dict['score']=conf #车牌区域检测得分
return result_dict
def detect_Recognition_plate(model, orgimg, device,plate_rec_model,car_rec_model=None):
# Load model
conf_thres = 0.3
iou_thres = 0.5
dict_list=[]
# orgimg = cv2.imread(image_path) # BGR
img0 = copy.deepcopy(orgimg)
img0 = np.transpose(img0, (2, 0, 1))
img = torch.from_numpy(img0)
assert orgimg is not None, 'Image Not Found '
# print(model)
model.to(device)
img.to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression_face(pred, conf_thres, iou_thres)
# Process detections
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
det[:, 5:13] = scale_coords_landmarks(img.shape[2:], det[:, 5:13], orgimg.shape).round()
for j in range(det.size()[0]):
xyxy = det[j, :4].view(-1).tolist()
conf = det[j, 4].cpu().numpy()
landmarks = det[j, 5:13].view(-1).tolist()
class_num = det[j, 13].cpu().numpy()
result_dict = get_plate_rec_landmark(orgimg, xyxy, conf, landmarks, class_num,device,plate_rec_model,car_rec_model)
dict_list.append(result_dict)
return dict_list
# cv2.imwrite('result.jpg', orgimg)
def draw_result(orgimg,dict_list):
result_str =""
for result in dict_list:
rect_area = result['rect']
object_no = result['object_no']
if not object_no==2:
x,y,w,h = rect_area[0],rect_area[1],rect_area[2]-rect_area[0],rect_area[3]-rect_area[1]
padding_w = 0.05*w
padding_h = 0.11*h
rect_area[0]=max(0,int(x-padding_w))
rect_area[1]=max(0,int(y-padding_h))
rect_area[2]=min(orgimg.shape[1],int(rect_area[2]+padding_w))
rect_area[3]=min(orgimg.shape[0],int(rect_area[3]+padding_h))
height_area = int(result['roi_height']/2)
landmarks=result['landmarks']
result_p = result['plate_no']
if result['object_no']==0:#单层
result_p+=" "+result['plate_color']
else: #双层
result_p+=" "+result['plate_color']+"双层"
result_str+=result_p+" "
for i in range(4): #关键点
cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
if len(result)>=1:
if "危险品" in result_p: #如果是危险品车牌,文字就画在下面
orgimg=cv2ImgAddText(orgimg,result_p,rect_area[0],rect_area[3],(0,255,0),height_area)
else:
orgimg=cv2ImgAddText(orgimg,result_p,rect_area[0]-height_area,rect_area[1]-height_area-10,(0,255,0),height_area)
else:
height_area=int((rect_area[3]-rect_area[1])/20)
car_color = result['car_color']
car_color_str="车辆颜色:"
car_color_str+=car_color
orgimg=cv2ImgAddText(orgimg,car_color_str,rect_area[0],rect_area[1],(0,255,0),height_area)
cv2.rectangle(orgimg,(rect_area[0],rect_area[1]),(rect_area[2],rect_area[3]),object_color[object_no],2) #画框
# print(result_str)
return orgimg
def get_second(capture):
if capture.isOpened():
rate = capture.get(5) # 帧速率
FrameNumber = capture.get(7) # 视频文件的帧数
duration = FrameNumber/rate # 帧速率/视频总帧数 是时间除以60之后单位是分钟
return int(rate),int(FrameNumber),int(duration)