algorithm_system_server/algorithm/Unetliversegmaster/dataset.py

41 lines
1.2 KiB
Python

from torch.utils.data import Dataset
import PIL.Image as Image
import os
# def make_dataset(root):
# # root = "./data/train"
# imgs = []
# ori_path = os.path.join(root, "Data")
# ground_path = os.path.join(root, "Ground")
# names = os.listdir(ori_path)
# n = len(names)
# for i in range(n):
# img = os.path.join(ori_path, names[i])
# mask = os.path.join(ground_path, names[i])
# imgs.append((img, mask))
# return imgs
class LiverDataset(Dataset):
def __init__(self, root, transform=None, target_transform=None):
imgs = "/home/shared/wy/flask_web/Unet_liver_seg-master/data/val/Data/P2_T1_00018.png"
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
# x_path, y_path = self.imgs[index]
x_path = self.imgs
img_x = Image.open(x_path).convert('L')
# img_y = Image.open(y_path).convert('L')
if self.transform is not None:
img_x = self.transform(img_x)
# if self.target_transform is not None:
# img_y = self.target_transform(img_y)
return img_x
def __len__(self):
return len(self.imgs)