algorithm_system_server/algorithm/pcb_detection.py

109 lines
3.6 KiB
Python

import time
from pathlib import Path
import datetime
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import os
from read_data import LoadImages, LoadStreams
from tools.draw_chinese import cv2ImgAddText
class PCBDetection():
def __init__(self, video_path=None):
self.model = torch.hub.load((os.getcwd()) + "/algorithm/yolov5", 'custom', source='local', path='./weight/pcb.pt', force_reload=True)
self.classes = self.model.names
self.imgsz = 640
self.stride = self.model.stride
# print( self.stride)
self.frame = [None]
if video_path is not None:
self.video_name = video_path
else:
self.video_name = 'vid2.mp4' # A default video file
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dataset = LoadImages(self.video_name, img_size=self.imgsz, stride = self.stride)
def use_webcam(self, source):
# self.dataset.release() # Release any existing video capture
# self.cap = cv2.VideoCapture(0) # Open default webcam
# print('use_webcam')
self.source = source
cudnn.benchmark = True
# self.dataset = LoadStreams(source, img_size=self.imgsz)
self.dataset = LoadStreams(source)
def class_to_label(self, x):
return self.classes[int(x)]
def get_frame(self):
chinese_name = ['漏孔', '鼠牙洞', '开路', '短路', '毛刺', '杂铜']
i = 0
for im0s in self.dataset:
# print(self.dataset.mode)
# print(self.dataset)
if self.dataset.mode == 'stream':
img = im0s[0].copy()
else:
img = im0s.copy()
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
results = self.model(img, size=640)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# Loop through each detected object and count the people
accuracy = 0
num_problem = len(results.xyxy[0])
bgr = (0, 255, 0)
for obj in results.xyxy[0]:
xmin, ymin, xmax, ymax = map(int, obj[:4])
accuracy = obj[4]
c = int(obj[-1])
if self.classes[c] == 'missing_hole':
color = (255, 200, 90)
elif self.classes[c] == 'mouse_bite':
color = (0, 0, 255)
elif self.classes[c] == 'caopen_circuitr':
color = (0, 255, 0)
elif self.classes[c] == 'short':
color = (50, 50, 50)
elif self.classes[c] == 'spur':
color = (255, 0, 0)
elif self.classes[c] == 'spurious_copper':
color = (0, 0, 0)
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
img = cv2ImgAddText(img,
f'{chinese_name[c]}',
xmax + 2,
ymin - 1,
(0, 250, 0),
20,)
# cv2.putText(img, f"{self.classes[c]}, {round(float(accuracy), 2)}", (xmin, ymin),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
ret, jpeg = cv2.imencode(".jpg", img)
resText=f'PCB检测到{num_problem}个缺陷'
# print(num_people)
i = i+1
return jpeg.tobytes(), resText