algorithm_system_server/algorithm/traffic_detection.py

82 lines
2.7 KiB
Python

import argparse
import os
import platform
import sys
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from read_data import LoadImages, LoadStreams
class TrafficDetection():
def __init__(self, video_path=None, model=None):
self.model = model
self.classes = self.model.names
self.imgsz = 640
self.frame = [None]
if video_path is not None:
self.video_name = video_path
else:
self.video_name = 'vid2.mp4' # A default video file
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dataset = LoadImages(self.video_name, img_size=self.imgsz)
self.flag = 0
def use_webcam(self, source):
# self.dataset.release() # Release any existing video capture
# self.cap = cv2.VideoCapture(0) # Open default webcam
# print('use_webcam')
self.source = source
cudnn.benchmark = True
self.dataset = LoadStreams(source, img_size=self.imgsz)
def class_to_label(self, x):
return self.classes[int(x)]
def get_frame(self):
for im0s in self.dataset:
# print(self.dataset.mode)
# print(self.dataset)
if self.dataset.mode == 'stream':
img = im0s[0].copy()
else:
img = im0s.copy()
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
results = self.model(img, size=640)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# Loop through each detected object and count the people
accuracy = 0
num_people = 0
color = (255, 200, 90)
for obj in results.xyxy[0]:
# xmin, ymin, xmax, ymax = map(int, obj[:4])
# accuracy = obj[4]
# if (accuracy > 0.5):
# cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
# cv2.putText(img, f" {round(float(accuracy), 2), self.classes[obj[-1].item()]}", (xmin, ymin),
# cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
xmin, ymin, xmax, ymax = map(int, obj[:4])
accuracy = obj[4]
c = int(obj[-1])
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(img, f"{self.classes[c]}, {round(float(accuracy), 2)}", (xmin, ymin),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
# Draw the number of people on the frame and display it
ret, jpeg = cv2.imencode(".jpg", img)
# print(num_people)
return jpeg.tobytes(), num_people\