algorithm_system_server/algorithm/yolov5/models/yolov5n-0.5.yaml

47 lines
1.3 KiB
YAML

# parameters
nc: 1 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 0.5 # layer channel multiple
# anchors
anchors:
- [4,5, 8,10, 13,16] # P3/8
- [23,29, 43,55, 73,105] # P4/16
- [146,217, 231,300, 335,433] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
[-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
[-1, 3, ShuffleV2Block, [128, 1]], # 2
[-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
[-1, 7, ShuffleV2Block, [256, 1]], # 4
[-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
[-1, 3, ShuffleV2Block, [512, 1]], # 6
]
# YOLOv5 head
head:
[[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P4
[-1, 1, C3, [128, False]], # 10
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 2], 1, Concat, [1]], # cat backbone P3
[-1, 1, C3, [128, False]], # 14 (P3/8-small)
[-1, 1, Conv, [128, 3, 2]],
[[-1, 11], 1, Concat, [1]], # cat head P4
[-1, 1, C3, [128, False]], # 17 (P4/16-medium)
[-1, 1, Conv, [128, 3, 2]],
[[-1, 7], 1, Concat, [1]], # cat head P5
[-1, 1, C3, [128, False]], # 20 (P5/32-large)
[[14, 17, 20], 1, CarDetect, [nc, anchors]], # Detect(P3, P4, P5)
]