import torch import torch.nn as nn from einops import rearrange from einops.layers.torch import Rearrange def conv_3x3_bn(inp, oup, image_size, downsample=False): stride = 1 if downsample == False else 2 return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.GELU() ) class PreNorm(nn.Module): def __init__(self, dim, fn, norm): super().__init__() self.norm = norm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class SE(nn.Module): def __init__(self, inp, oup, expansion=0.25): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(oup, int(inp * expansion), bias=False), nn.GELU(), nn.Linear(int(inp * expansion), oup, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class MBConv(nn.Module): def __init__(self, inp, oup, image_size, downsample=False, expansion=4): super().__init__() self.downsample = downsample stride = 1 if self.downsample == False else 2 hidden_dim = int(inp * expansion) if self.downsample: self.pool = nn.MaxPool2d(3, 2, 1) self.proj = nn.Conv2d(inp, oup, 1, 1, 0, bias=False) if expansion == 1: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.GELU(), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) else: self.conv = nn.Sequential( # pw # down-sample in the first conv nn.Conv2d(inp, hidden_dim, 1, stride, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.GELU(), # dw nn.Conv2d(hidden_dim, hidden_dim, 3, 1, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.GELU(), SE(inp, hidden_dim), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) self.conv = PreNorm(inp, self.conv, nn.BatchNorm2d) def forward(self, x): if self.downsample: return self.proj(self.pool(x)) + self.conv(x) else: return x + self.conv(x) class Attention(nn.Module): def __init__(self, inp, oup, image_size, heads=8, dim_head=32, dropout=0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == inp) self.ih, self.iw = image_size self.heads = heads self.scale = dim_head ** -0.5 # parameter table of relative position bias self.relative_bias_table = nn.Parameter( torch.zeros((2 * self.ih - 1) * (2 * self.iw - 1), heads)) coords = torch.meshgrid((torch.arange(self.ih), torch.arange(self.iw))) coords = torch.flatten(torch.stack(coords), 1) relative_coords = coords[:, :, None] - coords[:, None, :] relative_coords[0] += self.ih - 1 relative_coords[1] += self.iw - 1 relative_coords[0] *= 2 * self.iw - 1 relative_coords = rearrange(relative_coords, 'c h w -> h w c') relative_index = relative_coords.sum(-1).flatten().unsqueeze(1) self.register_buffer("relative_index", relative_index) self.attend = nn.Softmax(dim=-1) self.to_qkv = nn.Linear(inp, inner_dim * 3, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, oup), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): qkv = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange( t, 'b n (h d) -> b h n d', h=self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale # Use "gather" for more efficiency on GPUs relative_bias = self.relative_bias_table.gather( 0, self.relative_index.repeat(1, self.heads)) relative_bias = rearrange( relative_bias, '(h w) c -> 1 c h w', h=self.ih*self.iw, w=self.ih*self.iw) #print(dots.shape,relative_bias.shape) dots = dots + relative_bias attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class Transformer(nn.Module): def __init__(self, inp, oup, image_size, heads=8, dim_head=32, downsample=False, dropout=0.): super().__init__() hidden_dim = int(inp * 4) self.ih, self.iw = image_size self.downsample = downsample if self.downsample: self.pool1 = nn.MaxPool2d(3, 2, 1) self.pool2 = nn.MaxPool2d(3, 2, 1) self.proj = nn.Conv2d(inp, oup, 1, 1, 0, bias=False) self.attn = Attention(inp, oup, image_size, heads, dim_head, dropout) self.ff = FeedForward(oup, hidden_dim, dropout) self.attn = nn.Sequential( Rearrange('b c ih iw -> b (ih iw) c'), PreNorm(inp, self.attn, nn.LayerNorm), Rearrange('b (ih iw) c -> b c ih iw', ih=self.ih, iw=self.iw) ) self.ff = nn.Sequential( Rearrange('b c ih iw -> b (ih iw) c'), PreNorm(oup, self.ff, nn.LayerNorm), Rearrange('b (ih iw) c -> b c ih iw', ih=self.ih, iw=self.iw) ) def forward(self, x): if self.downsample: x = self.proj(self.pool1(x)) + self.attn(self.pool2(x)) else: x = x + self.attn(x) x = x + self.ff(x) return x class CoAtNet(nn.Module): def __init__(self, image_size, in_channels, num_blocks, channels, num_classes=1000, block_types=['C', 'C', 'T', 'T']): super().__init__() ih, iw = image_size block = {'C': MBConv, 'T': Transformer} self.s0 = self._make_layer( conv_3x3_bn, in_channels, channels[0], num_blocks[0], (ih // 2, iw // 2)) self.s1 = self._make_layer( block[block_types[0]], channels[0], channels[1], num_blocks[1], (ih // 4, iw // 4)) self.s2 = self._make_layer( block[block_types[1]], channels[1], channels[2], num_blocks[2], (ih // 8, iw // 8)) self.s3 = self._make_layer( block[block_types[2]], channels[2], channels[3], num_blocks[3], (ih // 16, iw // 16)) self.s4 = self._make_layer( block[block_types[3]], channels[3], channels[4], num_blocks[4], (ih // 32, iw // 32)) self.pool = nn.AvgPool2d(ih // 32, 1) self.fc = nn.Linear(channels[-1], num_classes, bias=False) def forward(self, x): x = self.s0(x) x = self.s1(x) x = self.s2(x) x = self.s3(x) x = self.s4(x) x = self.pool(x).view(-1, x.shape[1]) x = self.fc(x) return x def _make_layer(self, block, inp, oup, depth, image_size): layers = nn.ModuleList([]) for i in range(depth): if i == 0: layers.append(block(inp, oup, image_size, downsample=True)) else: layers.append(block(oup, oup, image_size)) return nn.Sequential(*layers) def coatnet_0(): num_blocks = [2, 2, 3, 5, 2] # L channels = [64, 96, 192, 384, 768] # D return CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000) def coatnet_1(): num_blocks = [2, 2, 6, 14, 2] # L channels = [64, 96, 192, 384, 768] # D return CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000) def coatnet_2(): num_blocks = [2, 2, 6, 14, 2] # L channels = [128, 128, 256, 512, 1026] # D return CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000) def coatnet_3(): num_blocks = [2, 2, 6, 14, 2] # L channels = [192, 192, 384, 768, 1536] # D return CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000) def coatnet_4(): num_blocks = [2, 2, 12, 28, 2] # L channels = [192, 192, 384, 768, 1536] # D return CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) if __name__ == '__main__': img = torch.randn(1, 3, 224, 224) net = coatnet_0() out = net(img) print(out.shape, count_parameters(net)) net = coatnet_1() out = net(img) print(out.shape, count_parameters(net)) net = coatnet_2() out = net(img) print(out.shape, count_parameters(net)) net = coatnet_3() out = net(img) print(out.shape, count_parameters(net)) net = coatnet_4() out = net(img) print(out.shape, count_parameters(net))