import torch from torchvision import models from resnet50cds import ResNet50 from efficientnet_v2 import EfficientNetV2 import math #from coatnet import coatnet_4 from timm.models.vision_transformer import vit_small_patch16_224 def get_model(name="vgg16", pretrained=True): if name == "resnet18": model = models.resnet18(pretrained=pretrained) elif name == "resnet50": model = models.resnet50(pretrained=pretrained) elif name == "vision_transformer": model = vit_small_patch16_224(pretrained=True,pretrained_cfg_overlay=dict(file='/home/cds/.cache/torch/hub/checkpoints/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz')) model.head = torch.nn.Linear(model.head.weight.shape[1], 4) elif name == "resnet50cds": model = ResNet50(image_depth=3, num_classes=4, use_cbam=False) # elif name == "coatnet": # model = coatnet_4() elif name == "EfficientNetV2": model = EfficientNetV2('s',in_channels=3,n_classes=4,pretrained=False) # elif name == "resnet50cds": # model = ResNet50(image_depth=1, num_classes=4, use_cbam=True) elif name == "densenet121": model = models.densenet121(pretrained=pretrained) elif name == "alexnet": model = models.alexnet(pretrained=pretrained) elif name == "vgg16": model = models.vgg16(pretrained=pretrained) elif name == "vgg19": model = models.vgg19(pretrained=pretrained) elif name == "inception_v3": model = models.inception_v3(pretrained=pretrained) elif name == "googlenet": model = models.googlenet(pretrained=pretrained) if torch.cuda.is_available(): return model.cuda() model=torch.nn.DataParallel(model,device_ids=[0,1,2,3,4,5]) model.cuda('cuda:0,1,2,3') else: return model def model_norm(model_1, model_2): squared_sum = 0 for name, layer in model_1.named_parameters(): # print(torch.mean(layer.data), torch.mean(model_2.state_dict()[name].data)) squared_sum += torch.sum(torch.pow(layer.data - model_2.state_dict()[name].data, 2)) return math.sqrt(squared_sum)