brain-tumor_image_classific.../client.py

72 lines
2.1 KiB
Python

import numpy as np
import models, torch, copy
class Client(object):
def __init__(self, conf, model, train_dataset, id = -1):
self.conf = conf
#训练模型
self.local_model = models.get_model(self.conf["model_name"])
self.client_id = id
self.train_dataset = train_dataset
all_range = list(range(len(self.train_dataset)))
data_len = int(len(self.train_dataset) / self.conf['no_models'])
#print(data_len)
train_indices = all_range[id * data_len: (id + 1) * data_len]
self.train_loader = torch.utils.data.DataLoader(self.train_dataset, batch_size=conf["batch_size"],
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_indices))
def local_train(self, model):
for name, param in model.state_dict().items():
self.local_model.state_dict()[name].copy_(param.clone())
#print(id(model))
optimizer = torch.optim.SGD(self.local_model.parameters(), lr=self.conf['lr'],
momentum=self.conf['momentum'])
#print(id(self.local_model))
self.local_model.train()
for e in range(self.conf["local_epochs"]):
for batch_id, batch in enumerate(self.train_loader):
data, target = batch
if torch.cuda.is_available():
data = data.cuda()
target = target.cuda()
optimizer.zero_grad()
output = self.local_model(data)
# print(type(output))
# target=np.array(target).astype(int)
# target=torch.from_numpy(target)
loss = torch.nn.functional.cross_entropy(output, target)
loss.backward()
optimizer.step()
if self.conf["dp"]:
model_norm = models.model_norm(model, self.local_model)
norm_scale = min(1, self.conf['C'] / (model_norm))
#print(model_norm, norm_scale)
for name, layer in self.local_model.named_parameters():
clipped_difference = norm_scale * (layer.data - model.state_dict()[name])
layer.data.copy_(model.state_dict()[name] + clipped_difference)
print("Epoch %d done." % e)
diff = dict()
for name, data in self.local_model.state_dict().items():
diff[name] = (data - model.state_dict()[name])
#print(diff[name])
return diff