Count_People/C++/opencv-4.7.0/samples/python/audio_spectrogram.py

805 lines
33 KiB
Python

import numpy as np
import cv2 as cv
import math
import argparse
class AudioDrawing:
'''
Used for drawing audio graphics
'''
def __init__(self, args):
self.inputType = args.inputType
self.draw = args.draw
self.graph = args.graph
self.audio = cv.samples.findFile(args.audio)
self.audioStream = args.audioStream
self.windowType = args.windowType
self.windLen = args.windLen
self.overlap = args.overlap
self.enableGrid = args.enableGrid
self.rows = args.rows
self.cols = args.cols
self.xmarkup = args.xmarkup
self.ymarkup = args.ymarkup
self.zmarkup = args.zmarkup
self.microTime = args.microTime
self.frameSizeTime = args.frameSizeTime
self.updateTime = args.updateTime
self.waitTime = args.waitTime
if self.initAndCheckArgs(args) is False:
exit()
def Draw(self):
if self.draw == "static":
if self.inputType == "file":
samplingRate, inputAudio = self.readAudioFile(self.audio)
elif self.inputType == "microphone":
samplingRate, inputAudio = self.readAudioMicrophone()
duration = len(inputAudio) // samplingRate
# since the dimensional grid is counted in integer seconds,
# if the input audio has an incomplete last second,
# then it is filled with zeros to complete
remainder = len(inputAudio) % samplingRate
if remainder != 0:
sizeToFullSec = samplingRate - remainder
zeroArr = np.zeros(sizeToFullSec)
inputAudio = np.concatenate((inputAudio, zeroArr), axis=0)
duration += 1
print("Update duration of audio to full second with ",
sizeToFullSec, " zero samples")
print("New number of samples ", len(inputAudio))
if duration <= self.xmarkup:
self.xmarkup = duration + 1
if self.graph == "ampl":
imgAmplitude = self.drawAmplitude(inputAudio)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate)
cv.imshow("Display window", imgAmplitude)
cv.waitKey(0)
elif self.graph == "spec":
stft = self.STFT(inputAudio)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft)
cv.imshow("Display window", imgSpec)
cv.waitKey(0)
elif self.graph == "ampl_and_spec":
imgAmplitude = self.drawAmplitude(inputAudio)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate)
stft = self.STFT(inputAudio)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft)
imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
cv.imshow("Display window", imgTotal)
cv.waitKey(0)
elif self.draw == "dynamic":
if self.inputType == "file":
self.dynamicFile(self.audio)
elif self.inputType == "microphone":
self.dynamicMicrophone()
def readAudioFile(self, file):
cap = cv.VideoCapture(file)
params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream,
cv.CAP_PROP_VIDEO_STREAM, -1,
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S]
params = np.asarray(params)
cap.open(file, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("Error : Can't read audio file: '", self.audio, "' with audioStream = ", self.audioStream)
print("Error: problems with audio reading, check input arguments")
exit()
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
frame = []
frame = np.asarray(frame)
inputAudio = []
while (1):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
inputAudio.append(frame[1][0][i])
else:
break
inputAudio = np.asarray(inputAudio)
print("Number of samples: ", len(inputAudio))
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
return samplingRate, inputAudio
def readAudioMicrophone(self):
cap = cv.VideoCapture()
params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1]
params = np.asarray(params)
cap.open(0, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("Error: Can't open microphone")
print("Error: problems with audio reading, check input arguments")
exit()
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
cvTickFreq = cv.getTickFrequency()
sysTimeCurr = cv.getTickCount()
sysTimePrev = sysTimeCurr
frame = []
frame = np.asarray(frame)
inputAudio = []
while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
inputAudio.append(frame[1][0][i])
sysTimeCurr = cv.getTickCount()
else:
print("Error: Grab error")
break
inputAudio = np.asarray(inputAudio)
print("Number of samples: ", len(inputAudio))
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
return samplingRate, inputAudio
def drawAmplitude(self, inputAudio):
color = (247, 111, 87)
thickness = 5
frameVectorRows = 500
middle = frameVectorRows // 2
# usually the input data is too big, so it is necessary
# to reduce size using interpolation of data
frameVectorCols = 40000
if len(inputAudio) < frameVectorCols:
frameVectorCols = len(inputAudio)
img = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8)
img += 255 # white background
audio = np.array(0)
audio = cv.resize(inputAudio, (1, frameVectorCols), interpolation=cv.INTER_LINEAR)
reshapeAudio = np.reshape(audio, (-1))
# normalization data by maximum element
minCv, maxCv, _, _ = cv.minMaxLoc(reshapeAudio)
maxElem = int(max(abs(minCv), abs(maxCv)))
# if all data values are zero (silence)
if maxElem == 0:
maxElem = 1
for i in range(len(reshapeAudio)):
reshapeAudio[i] = middle - reshapeAudio[i] * middle // maxElem
for i in range(1, frameVectorCols, 1):
cv.line(img, (i - 1, int(reshapeAudio[i - 1])), (i, int(reshapeAudio[i])), color, thickness)
img = cv.resize(img, (900, 400), interpolation=cv.INTER_AREA)
return img
def drawAmplitudeScale(self, inputImg, inputAudio, samplingRate, xmin=None, xmax=None):
# function of layout drawing for graph of volume amplitudes
# x axis for time
# y axis for amplitudes
# parameters for the new image size
preCol = 100
aftCol = 100
preLine = 40
aftLine = 50
frameVectorRows = inputImg.shape[0]
frameVectorCols = inputImg.shape[1]
totalRows = preLine + frameVectorRows + aftLine
totalCols = preCol + frameVectorCols + aftCol
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
imgTotal += 255 # white background
imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg
# calculating values on x axis
if xmin is None:
xmin = 0
if xmax is None:
xmax = len(inputAudio) / samplingRate
if xmax > self.xmarkup:
xList = np.linspace(xmin, xmax, self.xmarkup).astype(int)
else:
# this case is used to display a dynamic update
tmp = np.arange(xmin, xmax, 1).astype(int) + 1
xList = np.concatenate((np.zeros(self.xmarkup - len(tmp)), tmp[:]), axis=None)
# calculating values on y axis
ymin = np.min(inputAudio)
ymax = np.max(inputAudio)
yList = np.linspace(ymin, ymax, self.ymarkup)
# parameters for layout drawing
textThickness = 1
gridThickness = 1
gridColor = (0, 0, 0)
textColor = (0, 0, 0)
font = cv.FONT_HERSHEY_SIMPLEX
fontScale = 0.5
# horizontal axis under the graph
cv.line(imgTotal, (preCol, totalRows - aftLine),
(preCol + frameVectorCols, totalRows - aftLine),
gridColor, gridThickness)
# vertical axis for amplitude
cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows),
gridColor, gridThickness)
# parameters for layout calculation
serifSize = 10
indentDownX = serifSize * 2
indentDownY = serifSize // 2
indentLeftX = serifSize
indentLeftY = 2 * preCol // 3
# drawing layout for x axis
numX = frameVectorCols // (self.xmarkup - 1)
for i in range(len(xList)):
a1 = preCol + i * numX
a2 = frameVectorRows + preLine
b1 = a1
b2 = a2 + serifSize
if self.enableGrid is True:
d1 = a1
d2 = preLine
cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness)
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX),
font, fontScale, textColor, textThickness)
# drawing layout for y axis
numY = frameVectorRows // (self.ymarkup - 1)
for i in range(len(yList)):
a1 = preCol
a2 = totalRows - aftLine - i * numY
b1 = preCol - serifSize
b2 = a2
if self.enableGrid is True:
d1 = preCol + frameVectorCols
d2 = a2
cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness)
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY),
font, fontScale, textColor, textThickness)
imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA)
return imgTotal
def STFT(self, inputAudio):
"""
The Short-time Fourier transform (STFT), is a Fourier-related transform used to determine
the sinusoidal frequency and phase content of local sections of a signal as it changes over
time.
In practice, the procedure for computing STFTs is to divide a longer time signal into
shorter segments of equal length and then compute the Fourier transform separately on each
shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually
plots the changing spectra as a function of time, known as a spectrogram or waterfall plot.
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
"""
time_step = self.windLen - self.overlap
stft = []
if self.windowType == "Hann":
# https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
Hann_wind = []
for i in range (1 - self.windLen, self.windLen, 2):
Hann_wind.append(i * (0.5 + 0.5 * math.cos(math.pi * i / (self.windLen - 1))))
Hann_wind = np.asarray(Hann_wind)
elif self.windowType == "Hamming":
# https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
Hamming_wind = []
for i in range (1 - self.windLen, self.windLen, 2):
Hamming_wind.append(i * (0.53836 - 0.46164 * (math.cos(2 * math.pi * i / (self.windLen - 1)))))
Hamming_wind = np.asarray(Hamming_wind)
for index in np.arange(0, len(inputAudio), time_step).astype(int):
section = inputAudio[index:index + self.windLen]
zeroArray = np.zeros(self.windLen - len(section))
section = np.concatenate((section, zeroArray), axis=None)
if self.windowType == "Hann":
section *= Hann_wind
elif self.windowType == "Hamming":
section *= Hamming_wind
dst = np.empty(0)
dst = cv.dft(section, dst, flags=cv.DFT_COMPLEX_OUTPUT)
reshape_dst = np.reshape(dst, (-1))
# we need only the first part of the spectrum, the second part is symmetrical
complexArr = np.zeros(len(dst) // 4, dtype=complex)
for i in range(len(dst) // 4):
complexArr[i] = complex(reshape_dst[2 * i], reshape_dst[2 * i + 1])
stft.append(np.abs(complexArr))
stft = np.array(stft).transpose()
# convert elements to the decibel scale
np.log10(stft, out=stft, where=(stft != 0.))
return 10 * stft
def drawSpectrogram(self, stft):
frameVectorRows = stft.shape[0]
frameVectorCols = stft.shape[1]
# Normalization of image values from 0 to 255 to get more contrast image
# and this normalization will be taken into account in the scale drawing
colormapImageRows = 255
imgSpec = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8)
stftMat = np.zeros((frameVectorRows, frameVectorCols), np.float64)
cv.normalize(stft, stftMat, 1.0, 0.0, cv.NORM_INF)
for i in range(frameVectorRows):
for j in range(frameVectorCols):
imgSpec[frameVectorRows - i - 1, j] = int(stftMat[i][j] * colormapImageRows)
imgSpec = cv.applyColorMap(imgSpec, cv.COLORMAP_INFERNO)
imgSpec = cv.resize(imgSpec, (900, 400), interpolation=cv.INTER_LINEAR)
return imgSpec
def drawSpectrogramColorbar(self, inputImg, inputAudio, samplingRate, stft, xmin=None, xmax=None):
# function of layout drawing for the three-dimensional graph of the spectrogram
# x axis for time
# y axis for frequencies
# z axis for magnitudes of frequencies shown by color scale
# parameters for the new image size
preCol = 100
aftCol = 100
preLine = 40
aftLine = 50
colColor = 20
ind_col = 20
frameVectorRows = inputImg.shape[0]
frameVectorCols = inputImg.shape[1]
totalRows = preLine + frameVectorRows + aftLine
totalCols = preCol + frameVectorCols + aftCol + colColor
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
imgTotal += 255 # white background
imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg
# colorbar image due to drawSpectrogram(..) picture has been normalised from 255 to 0,
# so here colorbar has values from 255 to 0
colorArrSize = 256
imgColorBar = np.zeros((colorArrSize, colColor, 1), np.uint8)
for i in range(colorArrSize):
imgColorBar[i] += colorArrSize - 1 - i
imgColorBar = cv.applyColorMap(imgColorBar, cv.COLORMAP_INFERNO)
imgColorBar = cv.resize(imgColorBar, (colColor, frameVectorRows), interpolation=cv.INTER_AREA) #
imgTotal[preLine: preLine + frameVectorRows,
preCol + frameVectorCols + ind_col:
preCol + frameVectorCols + ind_col + colColor] = imgColorBar
# calculating values on x axis
if xmin is None:
xmin = 0
if xmax is None:
xmax = len(inputAudio) / samplingRate
if xmax > self.xmarkup:
xList = np.linspace(xmin, xmax, self.xmarkup).astype(int)
else:
# this case is used to display a dynamic update
tmpXList = np.arange(xmin, xmax, 1).astype(int) + 1
xList = np.concatenate((np.zeros(self.xmarkup - len(tmpXList)), tmpXList[:]), axis=None)
# calculating values on y axis
# according to the Nyquist sampling theorem,
# signal should posses frequencies equal to half of sampling rate
ymin = 0
ymax = int(samplingRate / 2.)
yList = np.linspace(ymin, ymax, self.ymarkup).astype(int)
# calculating values on z axis
zList = np.linspace(np.min(stft), np.max(stft), self.zmarkup)
# parameters for layout drawing
textThickness = 1
textColor = (0, 0, 0)
gridThickness = 1
gridColor = (0, 0, 0)
font = cv.FONT_HERSHEY_SIMPLEX
fontScale = 0.5
serifSize = 10
indentDownX = serifSize * 2
indentDownY = serifSize // 2
indentLeftX = serifSize
indentLeftY = 2 * preCol // 3
# horizontal axis
cv.line(imgTotal, (preCol, totalRows - aftLine), (preCol + frameVectorCols, totalRows - aftLine),
gridColor, gridThickness)
# vertical axis
cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows),
gridColor, gridThickness)
# drawing layout for x axis
numX = frameVectorCols // (self.xmarkup - 1)
for i in range(len(xList)):
a1 = preCol + i * numX
a2 = frameVectorRows + preLine
b1 = a1
b2 = a2 + serifSize
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX),
font, fontScale, textColor, textThickness)
# drawing layout for y axis
numY = frameVectorRows // (self.ymarkup - 1)
for i in range(len(yList)):
a1 = preCol
a2 = totalRows - aftLine - i * numY
b1 = preCol - serifSize
b2 = a2
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY),
font, fontScale, textColor, textThickness)
# drawing layout for z axis
numZ = frameVectorRows // (self.zmarkup - 1)
for i in range(len(zList)):
a1 = preCol + frameVectorCols + ind_col + colColor
a2 = totalRows - aftLine - i * numZ
b1 = a1 + serifSize
b2 = a2
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(zList[i])), (b1 + 10, b2 + indentDownY),
font, fontScale, textColor, textThickness)
imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA)
return imgTotal
def concatenateImages(self, img1, img2):
# first image will be under the second image
totalRows = img1.shape[0] + img2.shape[0]
totalCols = max(img1.shape[1], img2.shape[1])
# if images columns do not match, the difference is filled in white
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
imgTotal += 255
imgTotal[:img1.shape[0], :img1.shape[1]] = img1
imgTotal[img2.shape[0]:, :img2.shape[1]] = img2
return imgTotal
def dynamicFile(self, file):
cap = cv.VideoCapture(file)
params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream,
cv.CAP_PROP_VIDEO_STREAM, -1,
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S]
params = np.asarray(params)
cap.open(file, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("ERROR! Can't to open file")
return
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
step = int(self.updateTime * samplingRate)
frameSize = int(self.frameSizeTime * samplingRate)
# since the dimensional grid is counted in integer seconds,
# if duration of audio frame is less than xmarkup, to avoid an incorrect display,
# xmarkup will be taken equal to duration
if self.frameSizeTime <= self.xmarkup:
self.xmarkup = self.frameSizeTime
buffer = []
section = np.zeros(frameSize, dtype=np.int16)
currentSamples = 0
while (1):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
buffer.append(frame[1][0][i])
buffer_size = len(buffer)
if (buffer_size >= step):
section = list(section)
currentSamples += step
del section[0:step]
section.extend(buffer[0:step])
del buffer[0:step]
section = np.asarray(section)
if currentSamples < frameSize:
xmin = 0
xmax = (currentSamples) / samplingRate
else:
xmin = (currentSamples - frameSize) / samplingRate + 1
xmax = (currentSamples) / samplingRate
if self.graph == "ampl":
imgAmplitude = self.drawAmplitude(section)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
cv.imshow("Display amplitude graph", imgAmplitude)
cv.waitKey(self.waitTime)
elif self.graph == "spec":
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
cv.imshow("Display spectrogram", imgSpec)
cv.waitKey(self.waitTime)
elif self.graph == "ampl_and_spec":
imgAmplitude = self.drawAmplitude(section)
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
cv.imshow("Display amplitude graph and spectrogram", imgTotal)
cv.waitKey(self.waitTime)
else:
break
def dynamicMicrophone(self):
cap = cv.VideoCapture()
params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1]
params = np.asarray(params)
cap.open(0, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("ERROR! Can't to open file")
return
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
frame = []
frame = np.asarray(frame)
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
step = int(self.updateTime * samplingRate)
frameSize = int(self.frameSizeTime * samplingRate)
self.xmarkup = self.frameSizeTime
currentSamples = 0
buffer = []
section = np.zeros(frameSize, dtype=np.int16)
cvTickFreq = cv.getTickFrequency()
sysTimeCurr = cv.getTickCount()
sysTimePrev = sysTimeCurr
self.waitTime = self.updateTime * 1000
while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
buffer.append(frame[1][0][i])
sysTimeCurr = cv.getTickCount()
buffer_size = len(buffer)
if (buffer_size >= step):
section = list(section)
currentSamples += step
del section[0:step]
section.extend(buffer[0:step])
del buffer[0:step]
section = np.asarray(section)
if currentSamples < frameSize:
xmin = 0
xmax = (currentSamples) / samplingRate
else:
xmin = (currentSamples - frameSize) / samplingRate + 1
xmax = (currentSamples) / samplingRate
if self.graph == "ampl":
imgAmplitude = self.drawAmplitude(section)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
cv.imshow("Display amplitude graph", imgAmplitude)
cv.waitKey(self.waitTime)
elif self.graph == "spec":
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
cv.imshow("Display spectrogram", imgSpec)
cv.waitKey(self.waitTime)
elif self.graph == "ampl_and_spec":
imgAmplitude = self.drawAmplitude(section)
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
cv.imshow("Display amplitude graph and spectrogram", imgTotal)
cv.waitKey(self.waitTime)
else:
break
def initAndCheckArgs(self, args):
if args.inputType != "file" and args.inputType != "microphone":
print("Error: ", args.inputType, " input method doesnt exist")
return False
if args.draw != "static" and args.draw != "dynamic":
print("Error: ", args.draw, " draw type doesnt exist")
return False
if args.graph != "ampl" and args.graph != "spec" and args.graph != "ampl_and_spec":
print("Error: ", args.graph, " type of graph doesnt exist")
return False
if args.windowType != "Rect" and args.windowType != "Hann" and args.windowType != "Hamming":
print("Error: ", args.windowType, " type of window doesnt exist")
return False
if args.windLen <= 0:
print("Error: windLen = ", args.windLen, " - incorrect value. Must be > 0")
return False
if args.overlap <= 0:
print("Error: overlap = ", args.overlap, " - incorrect value. Must be > 0")
return False
if args.rows <= 0:
print("Error: rows = ", args.rows, " - incorrect value. Must be > 0")
return False
if args.cols <= 0:
print("Error: cols = ", args.cols, " - incorrect value. Must be > 0")
return False
if args.xmarkup < 2:
print("Error: xmarkup = ", args.xmarkup, " - incorrect value. Must be >= 2")
return False
if args.ymarkup < 2:
print("Error: ymarkup = ", args.ymarkup, " - incorrect value. Must be >= 2")
return False
if args.zmarkup < 2:
print("Error: zmarkup = ", args.zmarkup, " - incorrect value. Must be >= 2")
return False
if args.microTime <= 0:
print("Error: microTime = ", args.microTime, " - incorrect value. Must be > 0")
return False
if args.frameSizeTime <= 0:
print("Error: frameSizeTime = ", args.frameSizeTime, " - incorrect value. Must be > 0")
return False
if args.updateTime <= 0:
print("Error: updateTime = ", args.updateTime, " - incorrect value. Must be > 0")
return False
if args.waitTime < 0:
print("Error: waitTime = ", args.waitTime, " - incorrect value. Must be >= 0")
return False
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
description='''this sample draws a volume graph and/or spectrogram of audio/video files and microphone\nDefault usage: ./Spectrogram.exe''')
parser.add_argument("-i", "--inputType", dest="inputType", type=str, default="file", help="file or microphone")
parser.add_argument("-d", "--draw", dest="draw", type=str, default="static",
help="type of drawing: static - for plotting graph(s) across the entire input audio; dynamic - for plotting graph(s) in a time-updating window")
parser.add_argument("-g", "--graph", dest="graph", type=str, default="ampl_and_spec",
help="type of graph: amplitude graph or/and spectrogram. Please use tags below : ampl - draw the amplitude graph; spec - draw the spectrogram; ampl_and_spec - draw the amplitude graph and spectrogram on one image under each other")
parser.add_argument("-a", "--audio", dest="audio", type=str, default='Megamind.avi',
help="name and path to file")
parser.add_argument("-s", "--audioStream", dest="audioStream", type=int, default=1,
help=" CAP_PROP_AUDIO_STREAM value")
parser.add_argument("-t", '--windowType', dest="windowType", type=str, default="Rect",
help="type of window for STFT. Please use tags below : Rect/Hann/Hamming")
parser.add_argument("-l", '--windLen', dest="windLen", type=int, default=256, help="size of window for STFT")
parser.add_argument("-o", '--overlap', dest="overlap", type=int, default=128, help="overlap of windows for STFT")
parser.add_argument("-gd", '--grid', dest="enableGrid", type=bool, default=False, help="grid on amplitude graph(on/off)")
parser.add_argument("-r", '--rows', dest="rows", type=int, default=400, help="rows of output image")
parser.add_argument("-c", '--cols', dest="cols", type=int, default=900, help="cols of output image")
parser.add_argument("-x", '--xmarkup', dest="xmarkup", type=int, default=5,
help="number of x axis divisions (time asix)")
parser.add_argument("-y", '--ymarkup', dest="ymarkup", type=int, default=5,
help="number of y axis divisions (frequency or/and amplitude axis)") # ?
parser.add_argument("-z", '--zmarkup', dest="zmarkup", type=int, default=5,
help="number of z axis divisions (colorbar)") # ?
parser.add_argument("-m", '--microTime', dest="microTime", type=int, default=20,
help="time of recording audio with microphone in seconds")
parser.add_argument("-f", '--frameSizeTime', dest="frameSizeTime", type=int, default=5,
help="size of sliding window in seconds")
parser.add_argument("-u", '--updateTime', dest="updateTime", type=int, default=1,
help="update time of sliding window in seconds")
parser.add_argument("-w", '--waitTime', dest="waitTime", type=int, default=10,
help="parameter to cv.waitKey() for dynamic update, takes values in milliseconds")
args = parser.parse_args()
AudioDrawing(args).Draw()