484 lines
17 KiB
Python
484 lines
17 KiB
Python
|
# coding: utf-8
|
|||
|
|
|||
|
import os
|
|||
|
import pickle
|
|||
|
|
|||
|
import matplotlib
|
|||
|
import pandas as pd
|
|||
|
|
|||
|
matplotlib.use('Agg')
|
|||
|
import matplotlib.pyplot as plt
|
|||
|
import timeit
|
|||
|
import sklearn
|
|||
|
import argparse
|
|||
|
from sklearn.metrics import roc_curve, auc
|
|||
|
|
|||
|
from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap
|
|||
|
from prettytable import PrettyTable
|
|||
|
from pathlib import Path
|
|||
|
import sys
|
|||
|
import warnings
|
|||
|
|
|||
|
sys.path.insert(0, "../")
|
|||
|
warnings.filterwarnings("ignore")
|
|||
|
|
|||
|
parser = argparse.ArgumentParser(description='do ijb test')
|
|||
|
# general
|
|||
|
parser.add_argument('--model-prefix', default='', help='path to load model.')
|
|||
|
parser.add_argument('--image-path', default='', type=str, help='')
|
|||
|
parser.add_argument('--result-dir', default='.', type=str, help='')
|
|||
|
parser.add_argument('--batch-size', default=128, type=int, help='')
|
|||
|
parser.add_argument('--network', default='iresnet50', type=str, help='')
|
|||
|
parser.add_argument('--job', default='insightface', type=str, help='job name')
|
|||
|
parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB')
|
|||
|
args = parser.parse_args()
|
|||
|
|
|||
|
target = args.target
|
|||
|
model_path = args.model_prefix
|
|||
|
image_path = args.image_path
|
|||
|
result_dir = args.result_dir
|
|||
|
gpu_id = None
|
|||
|
use_norm_score = True # if Ture, TestMode(N1)
|
|||
|
use_detector_score = True # if Ture, TestMode(D1)
|
|||
|
use_flip_test = True # if Ture, TestMode(F1)
|
|||
|
job = args.job
|
|||
|
batch_size = args.batch_size
|
|||
|
|
|||
|
import cv2
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
from skimage import transform as trans
|
|||
|
import backbones
|
|||
|
|
|||
|
|
|||
|
class Embedding(object):
|
|||
|
def __init__(self, prefix, data_shape, batch_size=1):
|
|||
|
image_size = (112, 112)
|
|||
|
self.image_size = image_size
|
|||
|
weight = torch.load(prefix)
|
|||
|
resnet = eval("backbones.{}".format(args.network))(False).cuda()
|
|||
|
resnet.load_state_dict(weight)
|
|||
|
model = torch.nn.DataParallel(resnet)
|
|||
|
self.model = model
|
|||
|
self.model.eval()
|
|||
|
src = np.array([
|
|||
|
[30.2946, 51.6963],
|
|||
|
[65.5318, 51.5014],
|
|||
|
[48.0252, 71.7366],
|
|||
|
[33.5493, 92.3655],
|
|||
|
[62.7299, 92.2041]], dtype=np.float32)
|
|||
|
src[:, 0] += 8.0
|
|||
|
self.src = src
|
|||
|
self.batch_size = batch_size
|
|||
|
self.data_shape = data_shape
|
|||
|
|
|||
|
def get(self, rimg, landmark):
|
|||
|
|
|||
|
assert landmark.shape[0] == 68 or landmark.shape[0] == 5
|
|||
|
assert landmark.shape[1] == 2
|
|||
|
if landmark.shape[0] == 68:
|
|||
|
landmark5 = np.zeros((5, 2), dtype=np.float32)
|
|||
|
landmark5[0] = (landmark[36] + landmark[39]) / 2
|
|||
|
landmark5[1] = (landmark[42] + landmark[45]) / 2
|
|||
|
landmark5[2] = landmark[30]
|
|||
|
landmark5[3] = landmark[48]
|
|||
|
landmark5[4] = landmark[54]
|
|||
|
else:
|
|||
|
landmark5 = landmark
|
|||
|
tform = trans.SimilarityTransform()
|
|||
|
tform.estimate(landmark5, self.src)
|
|||
|
M = tform.params[0:2, :]
|
|||
|
img = cv2.warpAffine(rimg,
|
|||
|
M, (self.image_size[1], self.image_size[0]),
|
|||
|
borderValue=0.0)
|
|||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|||
|
img_flip = np.fliplr(img)
|
|||
|
img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB
|
|||
|
img_flip = np.transpose(img_flip, (2, 0, 1))
|
|||
|
input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8)
|
|||
|
input_blob[0] = img
|
|||
|
input_blob[1] = img_flip
|
|||
|
return input_blob
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
def forward_db(self, batch_data):
|
|||
|
imgs = torch.Tensor(batch_data).cuda()
|
|||
|
imgs.div_(255).sub_(0.5).div_(0.5)
|
|||
|
feat = self.model(imgs)
|
|||
|
feat = feat.reshape([self.batch_size, 2 * feat.shape[1]])
|
|||
|
return feat.cpu().numpy()
|
|||
|
|
|||
|
|
|||
|
# 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[]
|
|||
|
def divideIntoNstrand(listTemp, n):
|
|||
|
twoList = [[] for i in range(n)]
|
|||
|
for i, e in enumerate(listTemp):
|
|||
|
twoList[i % n].append(e)
|
|||
|
return twoList
|
|||
|
|
|||
|
|
|||
|
def read_template_media_list(path):
|
|||
|
# ijb_meta = np.loadtxt(path, dtype=str)
|
|||
|
ijb_meta = pd.read_csv(path, sep=' ', header=None).values
|
|||
|
templates = ijb_meta[:, 1].astype(np.int)
|
|||
|
medias = ijb_meta[:, 2].astype(np.int)
|
|||
|
return templates, medias
|
|||
|
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
|
|||
|
def read_template_pair_list(path):
|
|||
|
# pairs = np.loadtxt(path, dtype=str)
|
|||
|
pairs = pd.read_csv(path, sep=' ', header=None).values
|
|||
|
# print(pairs.shape)
|
|||
|
# print(pairs[:, 0].astype(np.int))
|
|||
|
t1 = pairs[:, 0].astype(np.int)
|
|||
|
t2 = pairs[:, 1].astype(np.int)
|
|||
|
label = pairs[:, 2].astype(np.int)
|
|||
|
return t1, t2, label
|
|||
|
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
|
|||
|
def read_image_feature(path):
|
|||
|
with open(path, 'rb') as fid:
|
|||
|
img_feats = pickle.load(fid)
|
|||
|
return img_feats
|
|||
|
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
|
|||
|
def get_image_feature(img_path, files_list, model_path, epoch, gpu_id):
|
|||
|
batch_size = args.batch_size
|
|||
|
data_shape = (3, 112, 112)
|
|||
|
|
|||
|
files = files_list
|
|||
|
print('files:', len(files))
|
|||
|
rare_size = len(files) % batch_size
|
|||
|
faceness_scores = []
|
|||
|
batch = 0
|
|||
|
img_feats = np.empty((len(files), 1024), dtype=np.float32)
|
|||
|
|
|||
|
batch_data = np.empty((2 * batch_size, 3, 112, 112))
|
|||
|
embedding = Embedding(model_path, data_shape, batch_size)
|
|||
|
for img_index, each_line in enumerate(files[:len(files) - rare_size]):
|
|||
|
name_lmk_score = each_line.strip().split(' ')
|
|||
|
img_name = os.path.join(img_path, name_lmk_score[0])
|
|||
|
img = cv2.imread(img_name)
|
|||
|
lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
|
|||
|
dtype=np.float32)
|
|||
|
lmk = lmk.reshape((5, 2))
|
|||
|
input_blob = embedding.get(img, lmk)
|
|||
|
|
|||
|
batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0]
|
|||
|
batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1]
|
|||
|
if (img_index + 1) % batch_size == 0:
|
|||
|
print('batch', batch)
|
|||
|
img_feats[batch * batch_size:batch * batch_size +
|
|||
|
batch_size][:] = embedding.forward_db(batch_data)
|
|||
|
batch += 1
|
|||
|
faceness_scores.append(name_lmk_score[-1])
|
|||
|
|
|||
|
batch_data = np.empty((2 * rare_size, 3, 112, 112))
|
|||
|
embedding = Embedding(model_path, data_shape, rare_size)
|
|||
|
for img_index, each_line in enumerate(files[len(files) - rare_size:]):
|
|||
|
name_lmk_score = each_line.strip().split(' ')
|
|||
|
img_name = os.path.join(img_path, name_lmk_score[0])
|
|||
|
img = cv2.imread(img_name)
|
|||
|
lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
|
|||
|
dtype=np.float32)
|
|||
|
lmk = lmk.reshape((5, 2))
|
|||
|
input_blob = embedding.get(img, lmk)
|
|||
|
batch_data[2 * img_index][:] = input_blob[0]
|
|||
|
batch_data[2 * img_index + 1][:] = input_blob[1]
|
|||
|
if (img_index + 1) % rare_size == 0:
|
|||
|
print('batch', batch)
|
|||
|
img_feats[len(files) -
|
|||
|
rare_size:][:] = embedding.forward_db(batch_data)
|
|||
|
batch += 1
|
|||
|
faceness_scores.append(name_lmk_score[-1])
|
|||
|
faceness_scores = np.array(faceness_scores).astype(np.float32)
|
|||
|
# img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01
|
|||
|
# faceness_scores = np.ones( (len(files), ), dtype=np.float32 )
|
|||
|
return img_feats, faceness_scores
|
|||
|
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
|
|||
|
def image2template_feature(img_feats=None, templates=None, medias=None):
|
|||
|
# ==========================================================
|
|||
|
# 1. face image feature l2 normalization. img_feats:[number_image x feats_dim]
|
|||
|
# 2. compute media feature.
|
|||
|
# 3. compute template feature.
|
|||
|
# ==========================================================
|
|||
|
unique_templates = np.unique(templates)
|
|||
|
template_feats = np.zeros((len(unique_templates), img_feats.shape[1]))
|
|||
|
|
|||
|
for count_template, uqt in enumerate(unique_templates):
|
|||
|
|
|||
|
(ind_t,) = np.where(templates == uqt)
|
|||
|
face_norm_feats = img_feats[ind_t]
|
|||
|
face_medias = medias[ind_t]
|
|||
|
unique_medias, unique_media_counts = np.unique(face_medias,
|
|||
|
return_counts=True)
|
|||
|
media_norm_feats = []
|
|||
|
for u, ct in zip(unique_medias, unique_media_counts):
|
|||
|
(ind_m,) = np.where(face_medias == u)
|
|||
|
if ct == 1:
|
|||
|
media_norm_feats += [face_norm_feats[ind_m]]
|
|||
|
else: # image features from the same video will be aggregated into one feature
|
|||
|
media_norm_feats += [
|
|||
|
np.mean(face_norm_feats[ind_m], axis=0, keepdims=True)
|
|||
|
]
|
|||
|
media_norm_feats = np.array(media_norm_feats)
|
|||
|
# media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True))
|
|||
|
template_feats[count_template] = np.sum(media_norm_feats, axis=0)
|
|||
|
if count_template % 2000 == 0:
|
|||
|
print('Finish Calculating {} template features.'.format(
|
|||
|
count_template))
|
|||
|
# template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True))
|
|||
|
template_norm_feats = sklearn.preprocessing.normalize(template_feats)
|
|||
|
# print(template_norm_feats.shape)
|
|||
|
return template_norm_feats, unique_templates
|
|||
|
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
|
|||
|
def verification(template_norm_feats=None,
|
|||
|
unique_templates=None,
|
|||
|
p1=None,
|
|||
|
p2=None):
|
|||
|
# ==========================================================
|
|||
|
# Compute set-to-set Similarity Score.
|
|||
|
# ==========================================================
|
|||
|
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
|
|||
|
for count_template, uqt in enumerate(unique_templates):
|
|||
|
template2id[uqt] = count_template
|
|||
|
|
|||
|
score = np.zeros((len(p1),)) # save cosine distance between pairs
|
|||
|
|
|||
|
total_pairs = np.array(range(len(p1)))
|
|||
|
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
|
|||
|
sublists = [
|
|||
|
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
|
|||
|
]
|
|||
|
total_sublists = len(sublists)
|
|||
|
for c, s in enumerate(sublists):
|
|||
|
feat1 = template_norm_feats[template2id[p1[s]]]
|
|||
|
feat2 = template_norm_feats[template2id[p2[s]]]
|
|||
|
similarity_score = np.sum(feat1 * feat2, -1)
|
|||
|
score[s] = similarity_score.flatten()
|
|||
|
if c % 10 == 0:
|
|||
|
print('Finish {}/{} pairs.'.format(c, total_sublists))
|
|||
|
return score
|
|||
|
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
def verification2(template_norm_feats=None,
|
|||
|
unique_templates=None,
|
|||
|
p1=None,
|
|||
|
p2=None):
|
|||
|
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
|
|||
|
for count_template, uqt in enumerate(unique_templates):
|
|||
|
template2id[uqt] = count_template
|
|||
|
score = np.zeros((len(p1),)) # save cosine distance between pairs
|
|||
|
total_pairs = np.array(range(len(p1)))
|
|||
|
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
|
|||
|
sublists = [
|
|||
|
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
|
|||
|
]
|
|||
|
total_sublists = len(sublists)
|
|||
|
for c, s in enumerate(sublists):
|
|||
|
feat1 = template_norm_feats[template2id[p1[s]]]
|
|||
|
feat2 = template_norm_feats[template2id[p2[s]]]
|
|||
|
similarity_score = np.sum(feat1 * feat2, -1)
|
|||
|
score[s] = similarity_score.flatten()
|
|||
|
if c % 10 == 0:
|
|||
|
print('Finish {}/{} pairs.'.format(c, total_sublists))
|
|||
|
return score
|
|||
|
|
|||
|
|
|||
|
def read_score(path):
|
|||
|
with open(path, 'rb') as fid:
|
|||
|
img_feats = pickle.load(fid)
|
|||
|
return img_feats
|
|||
|
|
|||
|
|
|||
|
# # Step1: Load Meta Data
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
assert target == 'IJBC' or target == 'IJBB'
|
|||
|
|
|||
|
# =============================================================
|
|||
|
# load image and template relationships for template feature embedding
|
|||
|
# tid --> template id, mid --> media id
|
|||
|
# format:
|
|||
|
# image_name tid mid
|
|||
|
# =============================================================
|
|||
|
start = timeit.default_timer()
|
|||
|
templates, medias = read_template_media_list(
|
|||
|
os.path.join('%s/meta' % image_path,
|
|||
|
'%s_face_tid_mid.txt' % target.lower()))
|
|||
|
stop = timeit.default_timer()
|
|||
|
print('Time: %.2f s. ' % (stop - start))
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
# =============================================================
|
|||
|
# load template pairs for template-to-template verification
|
|||
|
# tid : template id, label : 1/0
|
|||
|
# format:
|
|||
|
# tid_1 tid_2 label
|
|||
|
# =============================================================
|
|||
|
start = timeit.default_timer()
|
|||
|
p1, p2, label = read_template_pair_list(
|
|||
|
os.path.join('%s/meta' % image_path,
|
|||
|
'%s_template_pair_label.txt' % target.lower()))
|
|||
|
stop = timeit.default_timer()
|
|||
|
print('Time: %.2f s. ' % (stop - start))
|
|||
|
|
|||
|
# # Step 2: Get Image Features
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
# =============================================================
|
|||
|
# load image features
|
|||
|
# format:
|
|||
|
# img_feats: [image_num x feats_dim] (227630, 512)
|
|||
|
# =============================================================
|
|||
|
start = timeit.default_timer()
|
|||
|
img_path = '%s/loose_crop' % image_path
|
|||
|
img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower())
|
|||
|
img_list = open(img_list_path)
|
|||
|
files = img_list.readlines()
|
|||
|
# files_list = divideIntoNstrand(files, rank_size)
|
|||
|
files_list = files
|
|||
|
|
|||
|
# img_feats
|
|||
|
# for i in range(rank_size):
|
|||
|
img_feats, faceness_scores = get_image_feature(img_path, files_list,
|
|||
|
model_path, 0, gpu_id)
|
|||
|
stop = timeit.default_timer()
|
|||
|
print('Time: %.2f s. ' % (stop - start))
|
|||
|
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0],
|
|||
|
img_feats.shape[1]))
|
|||
|
|
|||
|
# # Step3: Get Template Features
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
# =============================================================
|
|||
|
# compute template features from image features.
|
|||
|
# =============================================================
|
|||
|
start = timeit.default_timer()
|
|||
|
# ==========================================================
|
|||
|
# Norm feature before aggregation into template feature?
|
|||
|
# Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face).
|
|||
|
# ==========================================================
|
|||
|
# 1. FaceScore (Feature Norm)
|
|||
|
# 2. FaceScore (Detector)
|
|||
|
|
|||
|
if use_flip_test:
|
|||
|
# concat --- F1
|
|||
|
# img_input_feats = img_feats
|
|||
|
# add --- F2
|
|||
|
img_input_feats = img_feats[:, 0:img_feats.shape[1] //
|
|||
|
2] + img_feats[:, img_feats.shape[1] // 2:]
|
|||
|
else:
|
|||
|
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2]
|
|||
|
|
|||
|
if use_norm_score:
|
|||
|
img_input_feats = img_input_feats
|
|||
|
else:
|
|||
|
# normalise features to remove norm information
|
|||
|
img_input_feats = img_input_feats / np.sqrt(
|
|||
|
np.sum(img_input_feats ** 2, -1, keepdims=True))
|
|||
|
|
|||
|
if use_detector_score:
|
|||
|
print(img_input_feats.shape, faceness_scores.shape)
|
|||
|
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis]
|
|||
|
else:
|
|||
|
img_input_feats = img_input_feats
|
|||
|
|
|||
|
template_norm_feats, unique_templates = image2template_feature(
|
|||
|
img_input_feats, templates, medias)
|
|||
|
stop = timeit.default_timer()
|
|||
|
print('Time: %.2f s. ' % (stop - start))
|
|||
|
|
|||
|
# # Step 4: Get Template Similarity Scores
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
# =============================================================
|
|||
|
# compute verification scores between template pairs.
|
|||
|
# =============================================================
|
|||
|
start = timeit.default_timer()
|
|||
|
score = verification(template_norm_feats, unique_templates, p1, p2)
|
|||
|
stop = timeit.default_timer()
|
|||
|
print('Time: %.2f s. ' % (stop - start))
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
save_path = os.path.join(result_dir, args.job)
|
|||
|
# save_path = result_dir + '/%s_result' % target
|
|||
|
|
|||
|
if not os.path.exists(save_path):
|
|||
|
os.makedirs(save_path)
|
|||
|
|
|||
|
score_save_file = os.path.join(save_path, "%s.npy" % target.lower())
|
|||
|
np.save(score_save_file, score)
|
|||
|
|
|||
|
# # Step 5: Get ROC Curves and TPR@FPR Table
|
|||
|
|
|||
|
# In[ ]:
|
|||
|
|
|||
|
files = [score_save_file]
|
|||
|
methods = []
|
|||
|
scores = []
|
|||
|
for file in files:
|
|||
|
methods.append(Path(file).stem)
|
|||
|
scores.append(np.load(file))
|
|||
|
|
|||
|
methods = np.array(methods)
|
|||
|
scores = dict(zip(methods, scores))
|
|||
|
colours = dict(
|
|||
|
zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2')))
|
|||
|
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1]
|
|||
|
tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels])
|
|||
|
fig = plt.figure()
|
|||
|
for method in methods:
|
|||
|
fpr, tpr, _ = roc_curve(label, scores[method])
|
|||
|
roc_auc = auc(fpr, tpr)
|
|||
|
fpr = np.flipud(fpr)
|
|||
|
tpr = np.flipud(tpr) # select largest tpr at same fpr
|
|||
|
plt.plot(fpr,
|
|||
|
tpr,
|
|||
|
color=colours[method],
|
|||
|
lw=1,
|
|||
|
label=('[%s (AUC = %0.4f %%)]' %
|
|||
|
(method.split('-')[-1], roc_auc * 100)))
|
|||
|
tpr_fpr_row = []
|
|||
|
tpr_fpr_row.append("%s-%s" % (method, target))
|
|||
|
for fpr_iter in np.arange(len(x_labels)):
|
|||
|
_, min_index = min(
|
|||
|
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr)))))
|
|||
|
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100))
|
|||
|
tpr_fpr_table.add_row(tpr_fpr_row)
|
|||
|
plt.xlim([10 ** -6, 0.1])
|
|||
|
plt.ylim([0.3, 1.0])
|
|||
|
plt.grid(linestyle='--', linewidth=1)
|
|||
|
plt.xticks(x_labels)
|
|||
|
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True))
|
|||
|
plt.xscale('log')
|
|||
|
plt.xlabel('False Positive Rate')
|
|||
|
plt.ylabel('True Positive Rate')
|
|||
|
plt.title('ROC on IJB')
|
|||
|
plt.legend(loc="lower right")
|
|||
|
fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower()))
|
|||
|
print(tpr_fpr_table)
|