331 lines
13 KiB
Python
331 lines
13 KiB
Python
|
import torch
|
|||
|
import numpy as np
|
|||
|
|
|||
|
|
|||
|
def point_form(boxes):
|
|||
|
""" Convert prior_boxes to (xmin, ymin, xmax, ymax)
|
|||
|
representation for comparison to point form ground truth data.
|
|||
|
Args:
|
|||
|
boxes: (tensor) center-size default boxes from priorbox layers.
|
|||
|
Return:
|
|||
|
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
|||
|
"""
|
|||
|
return torch.cat((boxes[:, :2] - boxes[:, 2:]/2, # xmin, ymin
|
|||
|
boxes[:, :2] + boxes[:, 2:]/2), 1) # xmax, ymax
|
|||
|
|
|||
|
|
|||
|
def center_size(boxes):
|
|||
|
""" Convert prior_boxes to (cx, cy, w, h)
|
|||
|
representation for comparison to center-size form ground truth data.
|
|||
|
Args:
|
|||
|
boxes: (tensor) point_form boxes
|
|||
|
Return:
|
|||
|
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
|||
|
"""
|
|||
|
return torch.cat((boxes[:, 2:] + boxes[:, :2])/2, # cx, cy
|
|||
|
boxes[:, 2:] - boxes[:, :2], 1) # w, h
|
|||
|
|
|||
|
|
|||
|
def intersect(box_a, box_b):
|
|||
|
""" We resize both tensors to [A,B,2] without new malloc:
|
|||
|
[A,2] -> [A,1,2] -> [A,B,2]
|
|||
|
[B,2] -> [1,B,2] -> [A,B,2]
|
|||
|
Then we compute the area of intersect between box_a and box_b.
|
|||
|
Args:
|
|||
|
box_a: (tensor) bounding boxes, Shape: [A,4].
|
|||
|
box_b: (tensor) bounding boxes, Shape: [B,4].
|
|||
|
Return:
|
|||
|
(tensor) intersection area, Shape: [A,B].
|
|||
|
"""
|
|||
|
A = box_a.size(0)
|
|||
|
B = box_b.size(0)
|
|||
|
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
|
|||
|
box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
|
|||
|
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
|
|||
|
box_b[:, :2].unsqueeze(0).expand(A, B, 2))
|
|||
|
inter = torch.clamp((max_xy - min_xy), min=0)
|
|||
|
return inter[:, :, 0] * inter[:, :, 1]
|
|||
|
|
|||
|
|
|||
|
def jaccard(box_a, box_b):
|
|||
|
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
|
|||
|
is simply the intersection over union of two boxes. Here we operate on
|
|||
|
ground truth boxes and default boxes.
|
|||
|
E.g.:
|
|||
|
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
|
|||
|
Args:
|
|||
|
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
|
|||
|
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
|
|||
|
Return:
|
|||
|
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
|
|||
|
"""
|
|||
|
inter = intersect(box_a, box_b)
|
|||
|
area_a = ((box_a[:, 2]-box_a[:, 0]) *
|
|||
|
(box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
|
|||
|
area_b = ((box_b[:, 2]-box_b[:, 0]) *
|
|||
|
(box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
|
|||
|
union = area_a + area_b - inter
|
|||
|
return inter / union # [A,B]
|
|||
|
|
|||
|
|
|||
|
def matrix_iou(a, b):
|
|||
|
"""
|
|||
|
return iou of a and b, numpy version for data augenmentation
|
|||
|
"""
|
|||
|
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
|||
|
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
|||
|
|
|||
|
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
|
|||
|
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
|||
|
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
|
|||
|
return area_i / (area_a[:, np.newaxis] + area_b - area_i)
|
|||
|
|
|||
|
|
|||
|
def matrix_iof(a, b):
|
|||
|
"""
|
|||
|
return iof of a and b, numpy version for data augenmentation
|
|||
|
"""
|
|||
|
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
|||
|
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
|||
|
|
|||
|
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
|
|||
|
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
|||
|
return area_i / np.maximum(area_a[:, np.newaxis], 1)
|
|||
|
|
|||
|
|
|||
|
def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
|
|||
|
"""Match each prior box with the ground truth box of the highest jaccard
|
|||
|
overlap, encode the bounding boxes, then return the matched indices
|
|||
|
corresponding to both confidence and location preds.
|
|||
|
Args:
|
|||
|
threshold: (float) The overlap threshold used when mathing boxes.
|
|||
|
truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
|
|||
|
priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
|
|||
|
variances: (tensor) Variances corresponding to each prior coord,
|
|||
|
Shape: [num_priors, 4].
|
|||
|
labels: (tensor) All the class labels for the image, Shape: [num_obj].
|
|||
|
landms: (tensor) Ground truth landms, Shape [num_obj, 10].
|
|||
|
loc_t: (tensor) Tensor to be filled w/ endcoded location targets.
|
|||
|
conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
|
|||
|
landm_t: (tensor) Tensor to be filled w/ endcoded landm targets.
|
|||
|
idx: (int) current batch index
|
|||
|
Return:
|
|||
|
The matched indices corresponding to 1)location 2)confidence 3)landm preds.
|
|||
|
"""
|
|||
|
# jaccard index
|
|||
|
overlaps = jaccard(
|
|||
|
truths,
|
|||
|
point_form(priors)
|
|||
|
)
|
|||
|
# (Bipartite Matching)
|
|||
|
# [1,num_objects] best prior for each ground truth
|
|||
|
best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
|
|||
|
|
|||
|
# ignore hard gt
|
|||
|
valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
|
|||
|
best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
|
|||
|
if best_prior_idx_filter.shape[0] <= 0:
|
|||
|
loc_t[idx] = 0
|
|||
|
conf_t[idx] = 0
|
|||
|
return
|
|||
|
|
|||
|
# [1,num_priors] best ground truth for each prior
|
|||
|
best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
|
|||
|
best_truth_idx.squeeze_(0)
|
|||
|
best_truth_overlap.squeeze_(0)
|
|||
|
best_prior_idx.squeeze_(1)
|
|||
|
best_prior_idx_filter.squeeze_(1)
|
|||
|
best_prior_overlap.squeeze_(1)
|
|||
|
best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
|
|||
|
# TODO refactor: index best_prior_idx with long tensor
|
|||
|
# ensure every gt matches with its prior of max overlap
|
|||
|
for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
|
|||
|
best_truth_idx[best_prior_idx[j]] = j
|
|||
|
matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
|
|||
|
conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
|
|||
|
conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
|
|||
|
loc = encode(matches, priors, variances)
|
|||
|
|
|||
|
matches_landm = landms[best_truth_idx]
|
|||
|
landm = encode_landm(matches_landm, priors, variances)
|
|||
|
loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
|
|||
|
conf_t[idx] = conf # [num_priors] top class label for each prior
|
|||
|
landm_t[idx] = landm
|
|||
|
|
|||
|
|
|||
|
def encode(matched, priors, variances):
|
|||
|
"""Encode the variances from the priorbox layers into the ground truth boxes
|
|||
|
we have matched (based on jaccard overlap) with the prior boxes.
|
|||
|
Args:
|
|||
|
matched: (tensor) Coords of ground truth for each prior in point-form
|
|||
|
Shape: [num_priors, 4].
|
|||
|
priors: (tensor) Prior boxes in center-offset form
|
|||
|
Shape: [num_priors,4].
|
|||
|
variances: (list[float]) Variances of priorboxes
|
|||
|
Return:
|
|||
|
encoded boxes (tensor), Shape: [num_priors, 4]
|
|||
|
"""
|
|||
|
|
|||
|
# dist b/t match center and prior's center
|
|||
|
g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2]
|
|||
|
# encode variance
|
|||
|
g_cxcy /= (variances[0] * priors[:, 2:])
|
|||
|
# match wh / prior wh
|
|||
|
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
|
|||
|
g_wh = torch.log(g_wh) / variances[1]
|
|||
|
# return target for smooth_l1_loss
|
|||
|
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
|
|||
|
|
|||
|
def encode_landm(matched, priors, variances):
|
|||
|
"""Encode the variances from the priorbox layers into the ground truth boxes
|
|||
|
we have matched (based on jaccard overlap) with the prior boxes.
|
|||
|
Args:
|
|||
|
matched: (tensor) Coords of ground truth for each prior in point-form
|
|||
|
Shape: [num_priors, 10].
|
|||
|
priors: (tensor) Prior boxes in center-offset form
|
|||
|
Shape: [num_priors,4].
|
|||
|
variances: (list[float]) Variances of priorboxes
|
|||
|
Return:
|
|||
|
encoded landm (tensor), Shape: [num_priors, 10]
|
|||
|
"""
|
|||
|
|
|||
|
# dist b/t match center and prior's center
|
|||
|
matched = torch.reshape(matched, (matched.size(0), 5, 2))
|
|||
|
priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
|||
|
priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
|||
|
priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
|||
|
priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
|||
|
priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
|
|||
|
g_cxcy = matched[:, :, :2] - priors[:, :, :2]
|
|||
|
# encode variance
|
|||
|
g_cxcy /= (variances[0] * priors[:, :, 2:])
|
|||
|
# g_cxcy /= priors[:, :, 2:]
|
|||
|
g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
|
|||
|
# return target for smooth_l1_loss
|
|||
|
return g_cxcy
|
|||
|
|
|||
|
|
|||
|
# Adapted from https://github.com/Hakuyume/chainer-ssd
|
|||
|
def decode(loc, priors, variances):
|
|||
|
"""Decode locations from predictions using priors to undo
|
|||
|
the encoding we did for offset regression at train time.
|
|||
|
Args:
|
|||
|
loc (tensor): location predictions for loc layers,
|
|||
|
Shape: [num_priors,4]
|
|||
|
priors (tensor): Prior boxes in center-offset form.
|
|||
|
Shape: [num_priors,4].
|
|||
|
variances: (list[float]) Variances of priorboxes
|
|||
|
Return:
|
|||
|
decoded bounding box predictions
|
|||
|
"""
|
|||
|
|
|||
|
boxes = torch.cat((
|
|||
|
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
|
|||
|
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
|
|||
|
boxes[:, :2] -= boxes[:, 2:] / 2
|
|||
|
boxes[:, 2:] += boxes[:, :2]
|
|||
|
return boxes
|
|||
|
|
|||
|
def decode_landm(pre, priors, variances):
|
|||
|
"""Decode landm from predictions using priors to undo
|
|||
|
the encoding we did for offset regression at train time.
|
|||
|
Args:
|
|||
|
pre (tensor): landm predictions for loc layers,
|
|||
|
Shape: [num_priors,10]
|
|||
|
priors (tensor): Prior boxes in center-offset form.
|
|||
|
Shape: [num_priors,4].
|
|||
|
variances: (list[float]) Variances of priorboxes
|
|||
|
Return:
|
|||
|
decoded landm predictions
|
|||
|
"""
|
|||
|
landms = torch.cat((priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
|
|||
|
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
|
|||
|
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
|
|||
|
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
|
|||
|
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
|
|||
|
), dim=1)
|
|||
|
return landms
|
|||
|
|
|||
|
|
|||
|
def log_sum_exp(x):
|
|||
|
"""Utility function for computing log_sum_exp while determining
|
|||
|
This will be used to determine unaveraged confidence loss across
|
|||
|
all examples in a batch.
|
|||
|
Args:
|
|||
|
x (Variable(tensor)): conf_preds from conf layers
|
|||
|
"""
|
|||
|
x_max = x.data.max()
|
|||
|
return torch.log(torch.sum(torch.exp(x-x_max), 1, keepdim=True)) + x_max
|
|||
|
|
|||
|
|
|||
|
# Original author: Francisco Massa:
|
|||
|
# https://github.com/fmassa/object-detection.torch
|
|||
|
# Ported to PyTorch by Max deGroot (02/01/2017)
|
|||
|
def nms(boxes, scores, overlap=0.5, top_k=200):
|
|||
|
"""Apply non-maximum suppression at test time to avoid detecting too many
|
|||
|
overlapping bounding boxes for a given object.
|
|||
|
Args:
|
|||
|
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
|
|||
|
scores: (tensor) The class predscores for the img, Shape:[num_priors].
|
|||
|
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
|
|||
|
top_k: (int) The Maximum number of box preds to consider.
|
|||
|
Return:
|
|||
|
The indices of the kept boxes with respect to num_priors.
|
|||
|
"""
|
|||
|
|
|||
|
keep = torch.Tensor(scores.size(0)).fill_(0).long()
|
|||
|
if boxes.numel() == 0:
|
|||
|
return keep
|
|||
|
x1 = boxes[:, 0]
|
|||
|
y1 = boxes[:, 1]
|
|||
|
x2 = boxes[:, 2]
|
|||
|
y2 = boxes[:, 3]
|
|||
|
area = torch.mul(x2 - x1, y2 - y1)
|
|||
|
v, idx = scores.sort(0) # sort in ascending order
|
|||
|
# I = I[v >= 0.01]
|
|||
|
idx = idx[-top_k:] # indices of the top-k largest vals
|
|||
|
xx1 = boxes.new()
|
|||
|
yy1 = boxes.new()
|
|||
|
xx2 = boxes.new()
|
|||
|
yy2 = boxes.new()
|
|||
|
w = boxes.new()
|
|||
|
h = boxes.new()
|
|||
|
|
|||
|
# keep = torch.Tensor()
|
|||
|
count = 0
|
|||
|
while idx.numel() > 0:
|
|||
|
i = idx[-1] # index of current largest val
|
|||
|
# keep.append(i)
|
|||
|
keep[count] = i
|
|||
|
count += 1
|
|||
|
if idx.size(0) == 1:
|
|||
|
break
|
|||
|
idx = idx[:-1] # remove kept element from view
|
|||
|
# load bboxes of next highest vals
|
|||
|
torch.index_select(x1, 0, idx, out=xx1)
|
|||
|
torch.index_select(y1, 0, idx, out=yy1)
|
|||
|
torch.index_select(x2, 0, idx, out=xx2)
|
|||
|
torch.index_select(y2, 0, idx, out=yy2)
|
|||
|
# store element-wise max with next highest score
|
|||
|
xx1 = torch.clamp(xx1, min=x1[i])
|
|||
|
yy1 = torch.clamp(yy1, min=y1[i])
|
|||
|
xx2 = torch.clamp(xx2, max=x2[i])
|
|||
|
yy2 = torch.clamp(yy2, max=y2[i])
|
|||
|
w.resize_as_(xx2)
|
|||
|
h.resize_as_(yy2)
|
|||
|
w = xx2 - xx1
|
|||
|
h = yy2 - yy1
|
|||
|
# check sizes of xx1 and xx2.. after each iteration
|
|||
|
w = torch.clamp(w, min=0.0)
|
|||
|
h = torch.clamp(h, min=0.0)
|
|||
|
inter = w*h
|
|||
|
# IoU = i / (area(a) + area(b) - i)
|
|||
|
rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
|
|||
|
union = (rem_areas - inter) + area[i]
|
|||
|
IoU = inter/union # store result in iou
|
|||
|
# keep only elements with an IoU <= overlap
|
|||
|
idx = idx[IoU.le(overlap)]
|
|||
|
return keep, count
|
|||
|
|
|||
|
|