410 lines
16 KiB
Python
410 lines
16 KiB
Python
|
"""Helper for evaluation on the Labeled Faces in the Wild dataset
|
||
|
"""
|
||
|
|
||
|
# MIT License
|
||
|
#
|
||
|
# Copyright (c) 2016 David Sandberg
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
# of this software and associated documentation files (the "Software"), to deal
|
||
|
# in the Software without restriction, including without limitation the rights
|
||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
# copies of the Software, and to permit persons to whom the Software is
|
||
|
# furnished to do so, subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
# SOFTWARE.
|
||
|
|
||
|
|
||
|
import datetime
|
||
|
import os
|
||
|
import pickle
|
||
|
|
||
|
import mxnet as mx
|
||
|
import numpy as np
|
||
|
import sklearn
|
||
|
import torch
|
||
|
from mxnet import ndarray as nd
|
||
|
from scipy import interpolate
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.model_selection import KFold
|
||
|
|
||
|
|
||
|
class LFold:
|
||
|
def __init__(self, n_splits=2, shuffle=False):
|
||
|
self.n_splits = n_splits
|
||
|
if self.n_splits > 1:
|
||
|
self.k_fold = KFold(n_splits=n_splits, shuffle=shuffle)
|
||
|
|
||
|
def split(self, indices):
|
||
|
if self.n_splits > 1:
|
||
|
return self.k_fold.split(indices)
|
||
|
else:
|
||
|
return [(indices, indices)]
|
||
|
|
||
|
|
||
|
def calculate_roc(thresholds,
|
||
|
embeddings1,
|
||
|
embeddings2,
|
||
|
actual_issame,
|
||
|
nrof_folds=10,
|
||
|
pca=0):
|
||
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
||
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
||
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
||
|
nrof_thresholds = len(thresholds)
|
||
|
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
|
||
|
|
||
|
tprs = np.zeros((nrof_folds, nrof_thresholds))
|
||
|
fprs = np.zeros((nrof_folds, nrof_thresholds))
|
||
|
accuracy = np.zeros((nrof_folds))
|
||
|
indices = np.arange(nrof_pairs)
|
||
|
|
||
|
if pca == 0:
|
||
|
diff = np.subtract(embeddings1, embeddings2)
|
||
|
dist = np.sum(np.square(diff), 1)
|
||
|
|
||
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
||
|
if pca > 0:
|
||
|
print('doing pca on', fold_idx)
|
||
|
embed1_train = embeddings1[train_set]
|
||
|
embed2_train = embeddings2[train_set]
|
||
|
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
|
||
|
pca_model = PCA(n_components=pca)
|
||
|
pca_model.fit(_embed_train)
|
||
|
embed1 = pca_model.transform(embeddings1)
|
||
|
embed2 = pca_model.transform(embeddings2)
|
||
|
embed1 = sklearn.preprocessing.normalize(embed1)
|
||
|
embed2 = sklearn.preprocessing.normalize(embed2)
|
||
|
diff = np.subtract(embed1, embed2)
|
||
|
dist = np.sum(np.square(diff), 1)
|
||
|
|
||
|
# Find the best threshold for the fold
|
||
|
acc_train = np.zeros((nrof_thresholds))
|
||
|
for threshold_idx, threshold in enumerate(thresholds):
|
||
|
_, _, acc_train[threshold_idx] = calculate_accuracy(
|
||
|
threshold, dist[train_set], actual_issame[train_set])
|
||
|
best_threshold_index = np.argmax(acc_train)
|
||
|
for threshold_idx, threshold in enumerate(thresholds):
|
||
|
tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy(
|
||
|
threshold, dist[test_set],
|
||
|
actual_issame[test_set])
|
||
|
_, _, accuracy[fold_idx] = calculate_accuracy(
|
||
|
thresholds[best_threshold_index], dist[test_set],
|
||
|
actual_issame[test_set])
|
||
|
|
||
|
tpr = np.mean(tprs, 0)
|
||
|
fpr = np.mean(fprs, 0)
|
||
|
return tpr, fpr, accuracy
|
||
|
|
||
|
|
||
|
def calculate_accuracy(threshold, dist, actual_issame):
|
||
|
predict_issame = np.less(dist, threshold)
|
||
|
tp = np.sum(np.logical_and(predict_issame, actual_issame))
|
||
|
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
||
|
tn = np.sum(
|
||
|
np.logical_and(np.logical_not(predict_issame),
|
||
|
np.logical_not(actual_issame)))
|
||
|
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
|
||
|
|
||
|
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
|
||
|
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
|
||
|
acc = float(tp + tn) / dist.size
|
||
|
return tpr, fpr, acc
|
||
|
|
||
|
|
||
|
def calculate_val(thresholds,
|
||
|
embeddings1,
|
||
|
embeddings2,
|
||
|
actual_issame,
|
||
|
far_target,
|
||
|
nrof_folds=10):
|
||
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
||
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
||
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
||
|
nrof_thresholds = len(thresholds)
|
||
|
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
|
||
|
|
||
|
val = np.zeros(nrof_folds)
|
||
|
far = np.zeros(nrof_folds)
|
||
|
|
||
|
diff = np.subtract(embeddings1, embeddings2)
|
||
|
dist = np.sum(np.square(diff), 1)
|
||
|
indices = np.arange(nrof_pairs)
|
||
|
|
||
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
||
|
|
||
|
# Find the threshold that gives FAR = far_target
|
||
|
far_train = np.zeros(nrof_thresholds)
|
||
|
for threshold_idx, threshold in enumerate(thresholds):
|
||
|
_, far_train[threshold_idx] = calculate_val_far(
|
||
|
threshold, dist[train_set], actual_issame[train_set])
|
||
|
if np.max(far_train) >= far_target:
|
||
|
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
|
||
|
threshold = f(far_target)
|
||
|
else:
|
||
|
threshold = 0.0
|
||
|
|
||
|
val[fold_idx], far[fold_idx] = calculate_val_far(
|
||
|
threshold, dist[test_set], actual_issame[test_set])
|
||
|
|
||
|
val_mean = np.mean(val)
|
||
|
far_mean = np.mean(far)
|
||
|
val_std = np.std(val)
|
||
|
return val_mean, val_std, far_mean
|
||
|
|
||
|
|
||
|
def calculate_val_far(threshold, dist, actual_issame):
|
||
|
predict_issame = np.less(dist, threshold)
|
||
|
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
|
||
|
false_accept = np.sum(
|
||
|
np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
||
|
n_same = np.sum(actual_issame)
|
||
|
n_diff = np.sum(np.logical_not(actual_issame))
|
||
|
# print(true_accept, false_accept)
|
||
|
# print(n_same, n_diff)
|
||
|
val = float(true_accept) / float(n_same)
|
||
|
far = float(false_accept) / float(n_diff)
|
||
|
return val, far
|
||
|
|
||
|
|
||
|
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
|
||
|
# Calculate evaluation metrics
|
||
|
thresholds = np.arange(0, 4, 0.01)
|
||
|
embeddings1 = embeddings[0::2]
|
||
|
embeddings2 = embeddings[1::2]
|
||
|
tpr, fpr, accuracy = calculate_roc(thresholds,
|
||
|
embeddings1,
|
||
|
embeddings2,
|
||
|
np.asarray(actual_issame),
|
||
|
nrof_folds=nrof_folds,
|
||
|
pca=pca)
|
||
|
thresholds = np.arange(0, 4, 0.001)
|
||
|
val, val_std, far = calculate_val(thresholds,
|
||
|
embeddings1,
|
||
|
embeddings2,
|
||
|
np.asarray(actual_issame),
|
||
|
1e-3,
|
||
|
nrof_folds=nrof_folds)
|
||
|
return tpr, fpr, accuracy, val, val_std, far
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def load_bin(path, image_size):
|
||
|
try:
|
||
|
with open(path, 'rb') as f:
|
||
|
bins, issame_list = pickle.load(f) # py2
|
||
|
except UnicodeDecodeError as e:
|
||
|
with open(path, 'rb') as f:
|
||
|
bins, issame_list = pickle.load(f, encoding='bytes') # py3
|
||
|
data_list = []
|
||
|
for flip in [0, 1]:
|
||
|
data = torch.empty((len(issame_list) * 2, 3, image_size[0], image_size[1]))
|
||
|
data_list.append(data)
|
||
|
for idx in range(len(issame_list) * 2):
|
||
|
_bin = bins[idx]
|
||
|
img = mx.image.imdecode(_bin)
|
||
|
if img.shape[1] != image_size[0]:
|
||
|
img = mx.image.resize_short(img, image_size[0])
|
||
|
img = nd.transpose(img, axes=(2, 0, 1))
|
||
|
for flip in [0, 1]:
|
||
|
if flip == 1:
|
||
|
img = mx.ndarray.flip(data=img, axis=2)
|
||
|
data_list[flip][idx][:] = torch.from_numpy(img.asnumpy())
|
||
|
if idx % 1000 == 0:
|
||
|
print('loading bin', idx)
|
||
|
print(data_list[0].shape)
|
||
|
return data_list, issame_list
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def test(data_set, backbone, batch_size, nfolds=10):
|
||
|
print('testing verification..')
|
||
|
data_list = data_set[0]
|
||
|
issame_list = data_set[1]
|
||
|
embeddings_list = []
|
||
|
time_consumed = 0.0
|
||
|
for i in range(len(data_list)):
|
||
|
data = data_list[i]
|
||
|
embeddings = None
|
||
|
ba = 0
|
||
|
while ba < data.shape[0]:
|
||
|
bb = min(ba + batch_size, data.shape[0])
|
||
|
count = bb - ba
|
||
|
_data = data[bb - batch_size: bb]
|
||
|
time0 = datetime.datetime.now()
|
||
|
img = ((_data / 255) - 0.5) / 0.5
|
||
|
net_out: torch.Tensor = backbone(img)
|
||
|
_embeddings = net_out.detach().cpu().numpy()
|
||
|
time_now = datetime.datetime.now()
|
||
|
diff = time_now - time0
|
||
|
time_consumed += diff.total_seconds()
|
||
|
if embeddings is None:
|
||
|
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
|
||
|
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
|
||
|
ba = bb
|
||
|
embeddings_list.append(embeddings)
|
||
|
|
||
|
_xnorm = 0.0
|
||
|
_xnorm_cnt = 0
|
||
|
for embed in embeddings_list:
|
||
|
for i in range(embed.shape[0]):
|
||
|
_em = embed[i]
|
||
|
_norm = np.linalg.norm(_em)
|
||
|
_xnorm += _norm
|
||
|
_xnorm_cnt += 1
|
||
|
_xnorm /= _xnorm_cnt
|
||
|
|
||
|
embeddings = embeddings_list[0].copy()
|
||
|
embeddings = sklearn.preprocessing.normalize(embeddings)
|
||
|
acc1 = 0.0
|
||
|
std1 = 0.0
|
||
|
embeddings = embeddings_list[0] + embeddings_list[1]
|
||
|
embeddings = sklearn.preprocessing.normalize(embeddings)
|
||
|
print(embeddings.shape)
|
||
|
print('infer time', time_consumed)
|
||
|
_, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=nfolds)
|
||
|
acc2, std2 = np.mean(accuracy), np.std(accuracy)
|
||
|
return acc1, std1, acc2, std2, _xnorm, embeddings_list
|
||
|
|
||
|
|
||
|
def dumpR(data_set,
|
||
|
backbone,
|
||
|
batch_size,
|
||
|
name='',
|
||
|
data_extra=None,
|
||
|
label_shape=None):
|
||
|
print('dump verification embedding..')
|
||
|
data_list = data_set[0]
|
||
|
issame_list = data_set[1]
|
||
|
embeddings_list = []
|
||
|
time_consumed = 0.0
|
||
|
for i in range(len(data_list)):
|
||
|
data = data_list[i]
|
||
|
embeddings = None
|
||
|
ba = 0
|
||
|
while ba < data.shape[0]:
|
||
|
bb = min(ba + batch_size, data.shape[0])
|
||
|
count = bb - ba
|
||
|
|
||
|
_data = nd.slice_axis(data, axis=0, begin=bb - batch_size, end=bb)
|
||
|
time0 = datetime.datetime.now()
|
||
|
if data_extra is None:
|
||
|
db = mx.io.DataBatch(data=(_data,), label=(_label,))
|
||
|
else:
|
||
|
db = mx.io.DataBatch(data=(_data, _data_extra),
|
||
|
label=(_label,))
|
||
|
model.forward(db, is_train=False)
|
||
|
net_out = model.get_outputs()
|
||
|
_embeddings = net_out[0].asnumpy()
|
||
|
time_now = datetime.datetime.now()
|
||
|
diff = time_now - time0
|
||
|
time_consumed += diff.total_seconds()
|
||
|
if embeddings is None:
|
||
|
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
|
||
|
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
|
||
|
ba = bb
|
||
|
embeddings_list.append(embeddings)
|
||
|
embeddings = embeddings_list[0] + embeddings_list[1]
|
||
|
embeddings = sklearn.preprocessing.normalize(embeddings)
|
||
|
actual_issame = np.asarray(issame_list)
|
||
|
outname = os.path.join('temp.bin')
|
||
|
with open(outname, 'wb') as f:
|
||
|
pickle.dump((embeddings, issame_list),
|
||
|
f,
|
||
|
protocol=pickle.HIGHEST_PROTOCOL)
|
||
|
|
||
|
|
||
|
# if __name__ == '__main__':
|
||
|
#
|
||
|
# parser = argparse.ArgumentParser(description='do verification')
|
||
|
# # general
|
||
|
# parser.add_argument('--data-dir', default='', help='')
|
||
|
# parser.add_argument('--model',
|
||
|
# default='../model/softmax,50',
|
||
|
# help='path to load model.')
|
||
|
# parser.add_argument('--target',
|
||
|
# default='lfw,cfp_ff,cfp_fp,agedb_30',
|
||
|
# help='test targets.')
|
||
|
# parser.add_argument('--gpu', default=0, type=int, help='gpu id')
|
||
|
# parser.add_argument('--batch-size', default=32, type=int, help='')
|
||
|
# parser.add_argument('--max', default='', type=str, help='')
|
||
|
# parser.add_argument('--mode', default=0, type=int, help='')
|
||
|
# parser.add_argument('--nfolds', default=10, type=int, help='')
|
||
|
# args = parser.parse_args()
|
||
|
# image_size = [112, 112]
|
||
|
# print('image_size', image_size)
|
||
|
# ctx = mx.gpu(args.gpu)
|
||
|
# nets = []
|
||
|
# vec = args.model.split(',')
|
||
|
# prefix = args.model.split(',')[0]
|
||
|
# epochs = []
|
||
|
# if len(vec) == 1:
|
||
|
# pdir = os.path.dirname(prefix)
|
||
|
# for fname in os.listdir(pdir):
|
||
|
# if not fname.endswith('.params'):
|
||
|
# continue
|
||
|
# _file = os.path.join(pdir, fname)
|
||
|
# if _file.startswith(prefix):
|
||
|
# epoch = int(fname.split('.')[0].split('-')[1])
|
||
|
# epochs.append(epoch)
|
||
|
# epochs = sorted(epochs, reverse=True)
|
||
|
# if len(args.max) > 0:
|
||
|
# _max = [int(x) for x in args.max.split(',')]
|
||
|
# assert len(_max) == 2
|
||
|
# if len(epochs) > _max[1]:
|
||
|
# epochs = epochs[_max[0]:_max[1]]
|
||
|
#
|
||
|
# else:
|
||
|
# epochs = [int(x) for x in vec[1].split('|')]
|
||
|
# print('model number', len(epochs))
|
||
|
# time0 = datetime.datetime.now()
|
||
|
# for epoch in epochs:
|
||
|
# print('loading', prefix, epoch)
|
||
|
# sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
|
||
|
# # arg_params, aux_params = ch_dev(arg_params, aux_params, ctx)
|
||
|
# all_layers = sym.get_internals()
|
||
|
# sym = all_layers['fc1_output']
|
||
|
# model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
|
||
|
# # model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], image_size[1]))], label_shapes=[('softmax_label', (args.batch_size,))])
|
||
|
# model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0],
|
||
|
# image_size[1]))])
|
||
|
# model.set_params(arg_params, aux_params)
|
||
|
# nets.append(model)
|
||
|
# time_now = datetime.datetime.now()
|
||
|
# diff = time_now - time0
|
||
|
# print('model loading time', diff.total_seconds())
|
||
|
#
|
||
|
# ver_list = []
|
||
|
# ver_name_list = []
|
||
|
# for name in args.target.split(','):
|
||
|
# path = os.path.join(args.data_dir, name + ".bin")
|
||
|
# if os.path.exists(path):
|
||
|
# print('loading.. ', name)
|
||
|
# data_set = load_bin(path, image_size)
|
||
|
# ver_list.append(data_set)
|
||
|
# ver_name_list.append(name)
|
||
|
#
|
||
|
# if args.mode == 0:
|
||
|
# for i in range(len(ver_list)):
|
||
|
# results = []
|
||
|
# for model in nets:
|
||
|
# acc1, std1, acc2, std2, xnorm, embeddings_list = test(
|
||
|
# ver_list[i], model, args.batch_size, args.nfolds)
|
||
|
# print('[%s]XNorm: %f' % (ver_name_list[i], xnorm))
|
||
|
# print('[%s]Accuracy: %1.5f+-%1.5f' % (ver_name_list[i], acc1, std1))
|
||
|
# print('[%s]Accuracy-Flip: %1.5f+-%1.5f' % (ver_name_list[i], acc2, std2))
|
||
|
# results.append(acc2)
|
||
|
# print('Max of [%s] is %1.5f' % (ver_name_list[i], np.max(results)))
|
||
|
# elif args.mode == 1:
|
||
|
# raise ValueError
|
||
|
# else:
|
||
|
# model = nets[0]
|
||
|
# dumpR(ver_list[0], model, args.batch_size, args.target)
|