import time import numpy as np import cv2 import datetime class CenterFace(object): def __init__(self, landmarks=True): self.landmarks = landmarks if self.landmarks: self.net = cv2.dnn.readNetFromONNX('./model/onnx/centerface.onnx') else: self.net = cv2.dnn.readNetFromONNX('./model/onnx/cface.1k.onnx') self.img_h_new, self.img_w_new, self.scale_h, self.scale_w = 0, 0, 0, 0 def __call__(self, img, height, width, threshold=0.5): self.img_h_new, self.img_w_new, self.scale_h, self.scale_w = self.transform(height, width) return self.inference_opencv(img, threshold) def inference_opencv(self, img, threshold): blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(self.img_w_new, self.img_h_new), mean=(0, 0, 0), swapRB=True, crop=False) self.net.setInput(blob) begin = datetime.datetime.now() start_time = time.time() if self.landmarks: heatmap, scale, offset, lms = self.net.forward(["537", "538", "539", '540']) else: heatmap, scale, offset = self.net.forward(["535", "536", "537"]) end = datetime.datetime.now() end_time = time.time() # print("cpuOne time: " + str(end_time - start_time)) # print("cpu times = ", end - begin) return self.postprocess(heatmap, lms, offset, scale, threshold) def transform(self, h, w): img_h_new, img_w_new = int(np.ceil(h / 32) * 32), int(np.ceil(w / 32) * 32) scale_h, scale_w = img_h_new / h, img_w_new / w return img_h_new, img_w_new, scale_h, scale_w def postprocess(self, heatmap, lms, offset, scale, threshold): if self.landmarks: dets, lms = self.decode(heatmap, scale, offset, lms, (self.img_h_new, self.img_w_new), threshold=threshold) else: dets = self.decode(heatmap, scale, offset, None, (self.img_h_new, self.img_w_new), threshold=threshold) if len(dets) > 0: dets[:, 0:4:2], dets[:, 1:4:2] = dets[:, 0:4:2] / self.scale_w, dets[:, 1:4:2] / self.scale_h if self.landmarks: lms[:, 0:10:2], lms[:, 1:10:2] = lms[:, 0:10:2] / self.scale_w, lms[:, 1:10:2] / self.scale_h else: dets = np.empty(shape=[0, 5], dtype=np.float32) if self.landmarks: lms = np.empty(shape=[0, 10], dtype=np.float32) if self.landmarks: return dets, lms else: return dets def decode(self, heatmap, scale, offset, landmark, size, threshold=0.1): heatmap = np.squeeze(heatmap) scale0, scale1 = scale[0, 0, :, :], scale[0, 1, :, :] offset0, offset1 = offset[0, 0, :, :], offset[0, 1, :, :] c0, c1 = np.where(heatmap > threshold) if self.landmarks: boxes, lms = [], [] else: boxes = [] if len(c0) > 0: for i in range(len(c0)): s0, s1 = np.exp(scale0[c0[i], c1[i]]) * 4, np.exp(scale1[c0[i], c1[i]]) * 4 o0, o1 = offset0[c0[i], c1[i]], offset1[c0[i], c1[i]] s = heatmap[c0[i], c1[i]] x1, y1 = max(0, (c1[i] + o1 + 0.5) * 4 - s1 / 2), max(0, (c0[i] + o0 + 0.5) * 4 - s0 / 2) x1, y1 = min(x1, size[1]), min(y1, size[0]) boxes.append([x1, y1, min(x1 + s1, size[1]), min(y1 + s0, size[0]), s]) if self.landmarks: lm = [] for j in range(5): lm.append(landmark[0, j * 2 + 1, c0[i], c1[i]] * s1 + x1) lm.append(landmark[0, j * 2, c0[i], c1[i]] * s0 + y1) lms.append(lm) boxes = np.asarray(boxes, dtype=np.float32) keep = self.nms(boxes[:, :4], boxes[:, 4], 0.3) boxes = boxes[keep, :] if self.landmarks: lms = np.asarray(lms, dtype=np.float32) lms = lms[keep, :] if self.landmarks: return boxes, lms else: return boxes def nms(self, boxes, scores, nms_thresh): x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = np.argsort(scores)[::-1] num_detections = boxes.shape[0] suppressed = np.zeros((num_detections,), dtype=np.bool) keep = [] for _i in range(num_detections): i = order[_i] if suppressed[i]: continue keep.append(i) ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, num_detections): j = order[_j] if suppressed[j]: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0, xx2 - xx1 + 1) h = max(0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= nms_thresh: suppressed[j] = True return keep