# coding: utf-8 import os import pickle import matplotlib import pandas as pd matplotlib.use('Agg') import matplotlib.pyplot as plt import timeit import sklearn import argparse from sklearn.metrics import roc_curve, auc from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap from prettytable import PrettyTable from pathlib import Path import sys import warnings sys.path.insert(0, "../") warnings.filterwarnings("ignore") parser = argparse.ArgumentParser(description='do ijb test') # general parser.add_argument('--model-prefix', default='', help='path to load model.') parser.add_argument('--image-path', default='', type=str, help='') parser.add_argument('--result-dir', default='.', type=str, help='') parser.add_argument('--batch-size', default=128, type=int, help='') parser.add_argument('--network', default='iresnet50', type=str, help='') parser.add_argument('--job', default='insightface', type=str, help='job name') parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB') args = parser.parse_args() target = args.target model_path = args.model_prefix image_path = args.image_path result_dir = args.result_dir gpu_id = None use_norm_score = True # if Ture, TestMode(N1) use_detector_score = True # if Ture, TestMode(D1) use_flip_test = True # if Ture, TestMode(F1) job = args.job batch_size = args.batch_size import cv2 import numpy as np import torch from skimage import transform as trans import backbones class Embedding(object): def __init__(self, prefix, data_shape, batch_size=1): image_size = (112, 112) self.image_size = image_size weight = torch.load(prefix) resnet = eval("backbones.{}".format(args.network))(False).cuda() resnet.load_state_dict(weight) model = torch.nn.DataParallel(resnet) self.model = model self.model.eval() src = np.array([ [30.2946, 51.6963], [65.5318, 51.5014], [48.0252, 71.7366], [33.5493, 92.3655], [62.7299, 92.2041]], dtype=np.float32) src[:, 0] += 8.0 self.src = src self.batch_size = batch_size self.data_shape = data_shape def get(self, rimg, landmark): assert landmark.shape[0] == 68 or landmark.shape[0] == 5 assert landmark.shape[1] == 2 if landmark.shape[0] == 68: landmark5 = np.zeros((5, 2), dtype=np.float32) landmark5[0] = (landmark[36] + landmark[39]) / 2 landmark5[1] = (landmark[42] + landmark[45]) / 2 landmark5[2] = landmark[30] landmark5[3] = landmark[48] landmark5[4] = landmark[54] else: landmark5 = landmark tform = trans.SimilarityTransform() tform.estimate(landmark5, self.src) M = tform.params[0:2, :] img = cv2.warpAffine(rimg, M, (self.image_size[1], self.image_size[0]), borderValue=0.0) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_flip = np.fliplr(img) img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB img_flip = np.transpose(img_flip, (2, 0, 1)) input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8) input_blob[0] = img input_blob[1] = img_flip return input_blob @torch.no_grad() def forward_db(self, batch_data): imgs = torch.Tensor(batch_data).cuda() imgs.div_(255).sub_(0.5).div_(0.5) feat = self.model(imgs) feat = feat.reshape([self.batch_size, 2 * feat.shape[1]]) return feat.cpu().numpy() # 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[] def divideIntoNstrand(listTemp, n): twoList = [[] for i in range(n)] for i, e in enumerate(listTemp): twoList[i % n].append(e) return twoList def read_template_media_list(path): # ijb_meta = np.loadtxt(path, dtype=str) ijb_meta = pd.read_csv(path, sep=' ', header=None).values templates = ijb_meta[:, 1].astype(np.int) medias = ijb_meta[:, 2].astype(np.int) return templates, medias # In[ ]: def read_template_pair_list(path): # pairs = np.loadtxt(path, dtype=str) pairs = pd.read_csv(path, sep=' ', header=None).values # print(pairs.shape) # print(pairs[:, 0].astype(np.int)) t1 = pairs[:, 0].astype(np.int) t2 = pairs[:, 1].astype(np.int) label = pairs[:, 2].astype(np.int) return t1, t2, label # In[ ]: def read_image_feature(path): with open(path, 'rb') as fid: img_feats = pickle.load(fid) return img_feats # In[ ]: def get_image_feature(img_path, files_list, model_path, epoch, gpu_id): batch_size = args.batch_size data_shape = (3, 112, 112) files = files_list print('files:', len(files)) rare_size = len(files) % batch_size faceness_scores = [] batch = 0 img_feats = np.empty((len(files), 1024), dtype=np.float32) batch_data = np.empty((2 * batch_size, 3, 112, 112)) embedding = Embedding(model_path, data_shape, batch_size) for img_index, each_line in enumerate(files[:len(files) - rare_size]): name_lmk_score = each_line.strip().split(' ') img_name = os.path.join(img_path, name_lmk_score[0]) img = cv2.imread(img_name) lmk = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32) lmk = lmk.reshape((5, 2)) input_blob = embedding.get(img, lmk) batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0] batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1] if (img_index + 1) % batch_size == 0: print('batch', batch) img_feats[batch * batch_size:batch * batch_size + batch_size][:] = embedding.forward_db(batch_data) batch += 1 faceness_scores.append(name_lmk_score[-1]) batch_data = np.empty((2 * rare_size, 3, 112, 112)) embedding = Embedding(model_path, data_shape, rare_size) for img_index, each_line in enumerate(files[len(files) - rare_size:]): name_lmk_score = each_line.strip().split(' ') img_name = os.path.join(img_path, name_lmk_score[0]) img = cv2.imread(img_name) lmk = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32) lmk = lmk.reshape((5, 2)) input_blob = embedding.get(img, lmk) batch_data[2 * img_index][:] = input_blob[0] batch_data[2 * img_index + 1][:] = input_blob[1] if (img_index + 1) % rare_size == 0: print('batch', batch) img_feats[len(files) - rare_size:][:] = embedding.forward_db(batch_data) batch += 1 faceness_scores.append(name_lmk_score[-1]) faceness_scores = np.array(faceness_scores).astype(np.float32) # img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01 # faceness_scores = np.ones( (len(files), ), dtype=np.float32 ) return img_feats, faceness_scores # In[ ]: def image2template_feature(img_feats=None, templates=None, medias=None): # ========================================================== # 1. face image feature l2 normalization. img_feats:[number_image x feats_dim] # 2. compute media feature. # 3. compute template feature. # ========================================================== unique_templates = np.unique(templates) template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) for count_template, uqt in enumerate(unique_templates): (ind_t,) = np.where(templates == uqt) face_norm_feats = img_feats[ind_t] face_medias = medias[ind_t] unique_medias, unique_media_counts = np.unique(face_medias, return_counts=True) media_norm_feats = [] for u, ct in zip(unique_medias, unique_media_counts): (ind_m,) = np.where(face_medias == u) if ct == 1: media_norm_feats += [face_norm_feats[ind_m]] else: # image features from the same video will be aggregated into one feature media_norm_feats += [ np.mean(face_norm_feats[ind_m], axis=0, keepdims=True) ] media_norm_feats = np.array(media_norm_feats) # media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True)) template_feats[count_template] = np.sum(media_norm_feats, axis=0) if count_template % 2000 == 0: print('Finish Calculating {} template features.'.format( count_template)) # template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True)) template_norm_feats = sklearn.preprocessing.normalize(template_feats) # print(template_norm_feats.shape) return template_norm_feats, unique_templates # In[ ]: def verification(template_norm_feats=None, unique_templates=None, p1=None, p2=None): # ========================================================== # Compute set-to-set Similarity Score. # ========================================================== template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) for count_template, uqt in enumerate(unique_templates): template2id[uqt] = count_template score = np.zeros((len(p1),)) # save cosine distance between pairs total_pairs = np.array(range(len(p1))) batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation sublists = [ total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) ] total_sublists = len(sublists) for c, s in enumerate(sublists): feat1 = template_norm_feats[template2id[p1[s]]] feat2 = template_norm_feats[template2id[p2[s]]] similarity_score = np.sum(feat1 * feat2, -1) score[s] = similarity_score.flatten() if c % 10 == 0: print('Finish {}/{} pairs.'.format(c, total_sublists)) return score # In[ ]: def verification2(template_norm_feats=None, unique_templates=None, p1=None, p2=None): template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) for count_template, uqt in enumerate(unique_templates): template2id[uqt] = count_template score = np.zeros((len(p1),)) # save cosine distance between pairs total_pairs = np.array(range(len(p1))) batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation sublists = [ total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) ] total_sublists = len(sublists) for c, s in enumerate(sublists): feat1 = template_norm_feats[template2id[p1[s]]] feat2 = template_norm_feats[template2id[p2[s]]] similarity_score = np.sum(feat1 * feat2, -1) score[s] = similarity_score.flatten() if c % 10 == 0: print('Finish {}/{} pairs.'.format(c, total_sublists)) return score def read_score(path): with open(path, 'rb') as fid: img_feats = pickle.load(fid) return img_feats # # Step1: Load Meta Data # In[ ]: assert target == 'IJBC' or target == 'IJBB' # ============================================================= # load image and template relationships for template feature embedding # tid --> template id, mid --> media id # format: # image_name tid mid # ============================================================= start = timeit.default_timer() templates, medias = read_template_media_list( os.path.join('%s/meta' % image_path, '%s_face_tid_mid.txt' % target.lower())) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # In[ ]: # ============================================================= # load template pairs for template-to-template verification # tid : template id, label : 1/0 # format: # tid_1 tid_2 label # ============================================================= start = timeit.default_timer() p1, p2, label = read_template_pair_list( os.path.join('%s/meta' % image_path, '%s_template_pair_label.txt' % target.lower())) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # # Step 2: Get Image Features # In[ ]: # ============================================================= # load image features # format: # img_feats: [image_num x feats_dim] (227630, 512) # ============================================================= start = timeit.default_timer() img_path = '%s/loose_crop' % image_path img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower()) img_list = open(img_list_path) files = img_list.readlines() # files_list = divideIntoNstrand(files, rank_size) files_list = files # img_feats # for i in range(rank_size): img_feats, faceness_scores = get_image_feature(img_path, files_list, model_path, 0, gpu_id) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], img_feats.shape[1])) # # Step3: Get Template Features # In[ ]: # ============================================================= # compute template features from image features. # ============================================================= start = timeit.default_timer() # ========================================================== # Norm feature before aggregation into template feature? # Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face). # ========================================================== # 1. FaceScore (Feature Norm) # 2. FaceScore (Detector) if use_flip_test: # concat --- F1 # img_input_feats = img_feats # add --- F2 img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] + img_feats[:, img_feats.shape[1] // 2:] else: img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] if use_norm_score: img_input_feats = img_input_feats else: # normalise features to remove norm information img_input_feats = img_input_feats / np.sqrt( np.sum(img_input_feats ** 2, -1, keepdims=True)) if use_detector_score: print(img_input_feats.shape, faceness_scores.shape) img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] else: img_input_feats = img_input_feats template_norm_feats, unique_templates = image2template_feature( img_input_feats, templates, medias) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # # Step 4: Get Template Similarity Scores # In[ ]: # ============================================================= # compute verification scores between template pairs. # ============================================================= start = timeit.default_timer() score = verification(template_norm_feats, unique_templates, p1, p2) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # In[ ]: save_path = os.path.join(result_dir, args.job) # save_path = result_dir + '/%s_result' % target if not os.path.exists(save_path): os.makedirs(save_path) score_save_file = os.path.join(save_path, "%s.npy" % target.lower()) np.save(score_save_file, score) # # Step 5: Get ROC Curves and TPR@FPR Table # In[ ]: files = [score_save_file] methods = [] scores = [] for file in files: methods.append(Path(file).stem) scores.append(np.load(file)) methods = np.array(methods) scores = dict(zip(methods, scores)) colours = dict( zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2'))) x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels]) fig = plt.figure() for method in methods: fpr, tpr, _ = roc_curve(label, scores[method]) roc_auc = auc(fpr, tpr) fpr = np.flipud(fpr) tpr = np.flipud(tpr) # select largest tpr at same fpr plt.plot(fpr, tpr, color=colours[method], lw=1, label=('[%s (AUC = %0.4f %%)]' % (method.split('-')[-1], roc_auc * 100))) tpr_fpr_row = [] tpr_fpr_row.append("%s-%s" % (method, target)) for fpr_iter in np.arange(len(x_labels)): _, min_index = min( list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) tpr_fpr_table.add_row(tpr_fpr_row) plt.xlim([10 ** -6, 0.1]) plt.ylim([0.3, 1.0]) plt.grid(linestyle='--', linewidth=1) plt.xticks(x_labels) plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) plt.xscale('log') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC on IJB') plt.legend(loc="lower right") fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower())) print(tpr_fpr_table)