Face/train.py

134 lines
5.5 KiB
Python

import argparse
import logging
import os
import time
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.utils.data.distributed
from torch.nn.utils import clip_grad_norm_
import backbones
import losses
from config import config as cfg
from dataset import MXFaceDataset, DataLoaderX
from partial_fc import PartialFC
from utils.utils_callbacks import CallBackVerification, CallBackLogging, CallBackModelCheckpoint
from utils.utils_logging import AverageMeter, init_logging
from utils.utils_amp import MaxClipGradScaler
torch.backends.cudnn.benchmark = True
def main(args):
world_size = int(os.environ['WORLD_SIZE'])
rank = int(os.environ['RANK'])
dist_url = "tcp://{}:{}".format(os.environ["MASTER_ADDR"], os.environ["MASTER_PORT"])
dist.init_process_group(backend='nccl', init_method=dist_url, rank=rank, world_size=world_size)
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
if not os.path.exists(cfg.output) and rank is 0:
os.makedirs(cfg.output)
else:
time.sleep(2)
log_root = logging.getLogger()
init_logging(log_root, rank, cfg.output)
trainset = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank)
train_sampler = torch.utils.data.distributed.DistributedSampler(
trainset, shuffle=True)
train_loader = DataLoaderX(
local_rank=local_rank, dataset=trainset, batch_size=cfg.batch_size,
sampler=train_sampler, num_workers=0, pin_memory=True, drop_last=True)
dropout = 0.4 if cfg.dataset is "webface" else 0
backbone = eval("backbones.{}".format(args.network))(False, dropout=dropout, fp16=cfg.fp16).to(local_rank)
if args.resume:
try:
backbone_pth = os.path.join(cfg.output, "backbone.pth")
backbone.load_state_dict(torch.load(backbone_pth, map_location=torch.device(local_rank)))
if rank is 0:
logging.info("backbone resume successfully!")
except (FileNotFoundError, KeyError, IndexError, RuntimeError):
logging.info("resume fail, backbone init successfully!")
for ps in backbone.parameters():
dist.broadcast(ps, 0)
backbone = torch.nn.parallel.DistributedDataParallel(
module=backbone, broadcast_buffers=False, device_ids=[local_rank])
backbone.train()
margin_softmax = eval("losses.{}".format(args.loss))()
module_partial_fc = PartialFC(
rank=rank, local_rank=local_rank, world_size=world_size, resume=args.resume,
batch_size=cfg.batch_size, margin_softmax=margin_softmax, num_classes=cfg.num_classes,
sample_rate=cfg.sample_rate, embedding_size=cfg.embedding_size, prefix=cfg.output)
opt_backbone = torch.optim.SGD(
params=[{'params': backbone.parameters()}],
lr=cfg.lr / 512 * cfg.batch_size * world_size,
momentum=0.9, weight_decay=cfg.weight_decay)
opt_pfc = torch.optim.SGD(
params=[{'params': module_partial_fc.parameters()}],
lr=cfg.lr / 512 * cfg.batch_size * world_size,
momentum=0.9, weight_decay=cfg.weight_decay)
scheduler_backbone = torch.optim.lr_scheduler.LambdaLR(
optimizer=opt_backbone, lr_lambda=cfg.lr_func)
scheduler_pfc = torch.optim.lr_scheduler.LambdaLR(
optimizer=opt_pfc, lr_lambda=cfg.lr_func)
start_epoch = 0
total_step = int(len(trainset) / cfg.batch_size / world_size * cfg.num_epoch)
if rank is 0: logging.info("Total Step is: %d" % total_step)
callback_verification = CallBackVerification(2000, rank, cfg.val_targets, cfg.rec)
callback_logging = CallBackLogging(50, rank, total_step, cfg.batch_size, world_size, None)
callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output)
loss = AverageMeter()
global_step = 0
grad_scaler = MaxClipGradScaler(cfg.batch_size, 128 * cfg.batch_size, growth_interval=100) if cfg.fp16 else None
for epoch in range(start_epoch, cfg.num_epoch):
train_sampler.set_epoch(epoch)
for step, (img, label) in enumerate(train_loader):
global_step += 1
features = F.normalize(backbone(img))
x_grad, loss_v = module_partial_fc.forward_backward(label, features, opt_pfc)
if cfg.fp16:
features.backward(grad_scaler.scale(x_grad))
grad_scaler.unscale_(opt_backbone)
clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
grad_scaler.step(opt_backbone)
grad_scaler.update()
else:
features.backward(x_grad)
clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
opt_backbone.step()
opt_pfc.step()
module_partial_fc.update()
opt_backbone.zero_grad()
opt_pfc.zero_grad()
loss.update(loss_v, 1)
callback_logging(global_step, loss, epoch, cfg.fp16, grad_scaler)
callback_verification(global_step, backbone)
callback_checkpoint(global_step, backbone, module_partial_fc)
scheduler_backbone.step()
scheduler_pfc.step()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch ArcFace Training')
parser.add_argument('--local_rank', type=int, default=0, help='local_rank')
parser.add_argument('--network', type=str, default='iresnet50', help='backbone network')
parser.add_argument('--loss', type=str, default='ArcFace', help='loss function')
parser.add_argument('--resume', type=int, default=0, help='model resuming')
args_ = parser.parse_args()
main(args_)