Graduation_Project/LHL/vocab.py

100 lines
2.7 KiB
Python
Raw Permalink Normal View History

2024-06-25 11:50:04 +08:00
# -----------------------------------------------------------
# Stacked Cross Attention Network implementation based on
# https://arxiv.org/abs/1803.08024.
# "Stacked Cross Attention for Image-Text Matching"
# Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, Xiaodong He
#
# Writen by Kuang-Huei Lee, 2018
# ---------------------------------------------------------------
"""Vocabulary wrapper"""
import nltk
from collections import Counter
import argparse
import os
import json
annotations = {
'coco_precomp': ['train_caps.txt', 'dev_caps.txt'],
'f30k_precomp': ['train_caps.txt', 'dev_caps.txt'],
}
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if word not in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if word not in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def serialize_vocab(vocab, dest):
d = {}
d['word2idx'] = vocab.word2idx
d['idx2word'] = vocab.idx2word
d['idx'] = vocab.idx
with open(dest, "w") as f:
json.dump(d, f)
def deserialize_vocab(src):
with open(src) as f:
d = json.load(f)
vocab = Vocabulary()
vocab.word2idx = d['word2idx']
vocab.idx2word = d['idx2word']
vocab.idx = d['idx']
return vocab
def from_txt(txt):
captions = []
with open(txt, 'rb') as f:
for line in f:
captions.append(line.strip())
return captions
def build_vocab(data_path, data_name, caption_file, threshold):
"""Build a simple vocabulary wrapper."""
counter = Counter()
for path in caption_file[data_name]:
full_path = os.path.join(os.path.join(data_path, data_name), path)
captions = from_txt(full_path)
for i, caption in enumerate(captions):
tokens = nltk.tokenize.word_tokenize(
caption.lower().decode('utf-8'))
counter.update(tokens)
if i % 1000 == 0:
print("[%d/%d] tokenized the captions." % (i, len(captions)))
# Discard if the occurrence of the word is less than min_word_cnt.
words = [word for word, cnt in counter.items() if cnt >= threshold]
# Create a vocab wrapper and add some special tokens.
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<end>')
vocab.add_word('<unk>')
# Add words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
return vocab