167 lines
5.9 KiB
Python
167 lines
5.9 KiB
Python
|
import json
|
||
|
from tqdm import tqdm
|
||
|
import pickle
|
||
|
import argparse
|
||
|
import nltk
|
||
|
import os
|
||
|
def create_tokenized_layer(layer: dict = None, output_path:str = None, tokenized_text_path:str =None):
|
||
|
|
||
|
new_layer = layer.copy()
|
||
|
titles_path = os.path.join(tokenized_text_path, 'tokenized_raw_titles.txt')
|
||
|
with open(titles_path,'rb') as f:
|
||
|
tokenized_titles = pickle.load(f)
|
||
|
|
||
|
ingrs_path = os.path.join(tokenized_text_path, 'tokenized_raw_ingrs.txt')
|
||
|
with open(ingrs_path,'rb') as f:
|
||
|
tokenized_ingrds = pickle.load(f)
|
||
|
|
||
|
instrs_path = os.path.join(tokenized_text_path, 'tokenized_raw_instrs.txt')
|
||
|
with open(instrs_path,'rb') as f:
|
||
|
tokenized_instrs = pickle.load(f)
|
||
|
|
||
|
for i, (k, v) in tqdm(enumerate(new_layer.items())):
|
||
|
v['title'] = tokenized_titles[v['id']]
|
||
|
v['ingredients'] = tokenized_ingrds[v['id']]
|
||
|
v['instructions'] = tokenized_instrs[v['id']]
|
||
|
|
||
|
|
||
|
with open(output_path,'wb') as f:
|
||
|
pickle.dump(new_layer, f)
|
||
|
|
||
|
|
||
|
def tokenize_and_save(vocab_path: str, entity: str ='title', layer=None, out_path: str = None):
|
||
|
""" given a vocab, get and save the indices of each word in the dataset"""
|
||
|
filter_ = ['-', '_', '/']
|
||
|
|
||
|
embedded = {}
|
||
|
count = 0
|
||
|
with open(vocab_path,'rb') as f:
|
||
|
vocab = pickle.load(f)
|
||
|
for i, (k, v) in tqdm(enumerate(layer.items())):
|
||
|
if entity == 'title':
|
||
|
text = v['title'].lower()
|
||
|
for f in filter_:
|
||
|
text = text.replace(f, ' ')
|
||
|
text = nltk.tokenize.word_tokenize(text)
|
||
|
tokenized_text = []
|
||
|
tokenized_text.append(vocab['<start>'])
|
||
|
for w in text:
|
||
|
if w in vocab:
|
||
|
tokenized_text.append(vocab[w])
|
||
|
else:
|
||
|
tokenized_text.append(vocab['<unk>'])
|
||
|
count+=1
|
||
|
tokenized_text.append(vocab['<end>'])
|
||
|
embedded[v['id']] = tokenized_text
|
||
|
elif entity == 'ingrs':
|
||
|
tokenized_texts = []
|
||
|
ingrs = [ing['text'].lower() for ing in v['ingredients']]
|
||
|
for text in ingrs:
|
||
|
|
||
|
for f in filter_:
|
||
|
text = text.replace(f, ' ')
|
||
|
text = nltk.tokenize.word_tokenize(text)
|
||
|
tokenized_text = []
|
||
|
tokenized_text.append(vocab['<start>'])
|
||
|
for w in text:
|
||
|
if w in vocab:
|
||
|
tokenized_text.append(vocab[w])
|
||
|
else:
|
||
|
tokenized_text.append(vocab['<unk>'])
|
||
|
count+=1
|
||
|
tokenized_text.append(vocab['<end>'])
|
||
|
tokenized_texts.append(tokenized_text)
|
||
|
embedded[v['id']] = tokenized_texts
|
||
|
|
||
|
elif entity == 'instrs':
|
||
|
tokenized_texts = []
|
||
|
ingrs = [ing['text'].lower() for ing in v['instructions']]
|
||
|
for text in ingrs:
|
||
|
|
||
|
for f in filter_:
|
||
|
text = text.replace(f, ' ')
|
||
|
text = nltk.tokenize.word_tokenize(text)
|
||
|
tokenized_text = []
|
||
|
tokenized_text.append(vocab['<start>'])
|
||
|
for w in text:
|
||
|
if w in vocab:
|
||
|
tokenized_text.append(vocab[w])
|
||
|
else:
|
||
|
tokenized_text.append(vocab['<unk>'])
|
||
|
count+=1
|
||
|
print(w)
|
||
|
tokenized_text.append(vocab['<end>'])
|
||
|
tokenized_texts.append(tokenized_text)
|
||
|
embedded[v['id']] = tokenized_texts
|
||
|
|
||
|
print(count, 'UNK')
|
||
|
if out_path is not None:
|
||
|
with open(out_path,'wb') as f:
|
||
|
pickle.dump(embedded, f)
|
||
|
else:
|
||
|
return embedded
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--path_layer', type=str,
|
||
|
help='path to layer 1')
|
||
|
parser.add_argument('--output_path_vocab', type=str,)
|
||
|
parser.add_argument('--output_path_layer1', type=str,)
|
||
|
parser.add_argument('--output_path_tokenized_texts', type=str)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
|
||
|
|
||
|
path_layer1 = args.path_layer
|
||
|
|
||
|
with open(path_layer1, 'r') as f:
|
||
|
layer1 = json.load(f)
|
||
|
layer1_ = {data['id']:data for data in tqdm(layer1)}
|
||
|
|
||
|
print('finish reading')
|
||
|
print('start creating vocab...')
|
||
|
text = set()
|
||
|
filter_titles = ['-', '_', '/']
|
||
|
for i, (k, v) in tqdm(enumerate(layer1_.items())):
|
||
|
title = v['title'].lower()
|
||
|
ingrs = [ing['text'].lower() for ing in v['ingredients']]
|
||
|
insts = [inst['text'].lower() for inst in v['instructions']]
|
||
|
total = [title] + ingrs + insts
|
||
|
for t in total:
|
||
|
for f in filter_titles:
|
||
|
t = t.replace(f, ' ')
|
||
|
t = nltk.tokenize.word_tokenize(t)
|
||
|
for w in t:
|
||
|
text.add(w)
|
||
|
|
||
|
text.add('<start>')
|
||
|
text.add('<end>')
|
||
|
text.add('<unk>')
|
||
|
|
||
|
text_dict = {}
|
||
|
for i, t in tqdm(enumerate(text)):
|
||
|
text_dict[t] = i
|
||
|
|
||
|
|
||
|
output_path_vocab = args.output_path_vocab
|
||
|
|
||
|
with open(output_path_vocab,'wb') as f:
|
||
|
pickle.dump(text_dict, f)
|
||
|
|
||
|
print("start tokenization...")
|
||
|
|
||
|
out_path = os.path.join(args.output_path_tokenized_texts, 'tokenized_raw_titles.txt')
|
||
|
embedded = tokenize_and_save(vocab_path=output_path_vocab, entity='title', layer=layer1_, out_path=out_path)
|
||
|
|
||
|
out_path = os.path.join(args.output_path_tokenized_texts, 'tokenized_raw_ingrs.txt')
|
||
|
embedded = tokenize_and_save(vocab_path=output_path_vocab, entity='ingrs', layer=layer1_, out_path=out_path)
|
||
|
|
||
|
out_path = os.path.join(args.output_path_tokenized_texts, 'tokenized_raw_instrs.txt')
|
||
|
embedded = tokenize_and_save(vocab_path=output_path_vocab, entity='instrs', layer=layer1_, out_path=out_path)
|
||
|
|
||
|
|
||
|
print('create and save layer 1...')
|
||
|
create_tokenized_layer(layer=layer1_, output_path=args.output_path_layer1 , tokenized_text_path=args.output_path_tokenized_texts)
|