Graduation_Project/WZM/data.py

146 lines
5.2 KiB
Python
Raw Permalink Normal View History

2024-06-24 18:15:10 +08:00
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import os
import nltk
import numpy as np
import yaml
import argparse
import utils
from vocab import deserialize_vocab
from PIL import Image
class PrecompDataset(data.Dataset):
"""
Load precomputed captions and image features
"""
def __init__(self, data_split, vocab, opt):
self.vocab = vocab
self.loc = opt['dataset']['data_path']
self.img_path = opt['dataset']['image_path']
# Captions
self.images = []
self.captions = []
self.maxlength = 0
if data_split != 'test':
with open(self.loc+'%s_caps_verify.txt' % data_split, 'rb') as f:
for line in f:
self.captions.append(line.strip())
with open(self.loc + '%s_filename_verify.txt' % data_split, 'rb') as f:
for line in f:
self.images.append(line.strip())
else:
with open(self.loc + '%s_caps.txt' % data_split, 'rb') as f:
for line in f:
self.captions.append(line.strip())
with open(self.loc + '%s_filename.txt' % data_split, 'rb') as f:
for line in f:
self.images.append(line.strip())
self.length = len(self.captions)
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if len(self.images) != self.length:
self.im_div = 5
else:
self.im_div = 1
if data_split == "train":
self.transform = transforms.Compose([
# transforms.Resize((278, 278)),
transforms.Resize((256, 256)),
transforms.RandomRotation(degrees=(0, 90)),
# transforms.RandomCrop(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
else:
self.transform = transforms.Compose([
# transforms.Resize((256, 256)),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
def __getitem__(self, index):
# handle the image redundancy
img_id = index//self.im_div
caption = self.captions[index]
vocab = self.vocab
# Convert caption (string) to word ids.
tokens = nltk.tokenize.word_tokenize(
caption.lower().decode('utf-8'))
punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
tokens = [k for k in tokens if k not in punctuations]
tokens_UNK = [k if k in vocab.word2idx.keys() else '<unk>' for k in tokens]
caption = []
caption.append(vocab('<start>'))
caption.extend([vocab(token) for token in tokens_UNK])
caption.append(vocab('<end>'))
target = torch.LongTensor(caption)
image = Image.open(self.img_path + str(self.images[img_id])[2:-1]).convert('RGB')
image = self.transform(image) # torch.Size([3, 256, 256])
return image, target, index, img_id
def __len__(self):
return self.length
def collate_fn(data):
# Sort a data list by caption length
data.sort(key=lambda x: len(x[1]), reverse=True)
images, captions, ids, img_ids = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merget captions (convert tuple of 1D tensor to 2D tensor)
lengths = [len(cap) for cap in captions]
targets = torch.zeros(len(captions), max(lengths)).long()
for i, cap in enumerate(captions):
end = lengths[i]
targets[i, :end] = cap[:end]
lengths = [l if l !=0 else 1 for l in lengths]
return images, targets, lengths, ids
def get_precomp_loader(data_split, vocab, batch_size=100,
shuffle=True, num_workers=0, opt={}):
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
dset = PrecompDataset(data_split, vocab, opt)
data_loader = torch.utils.data.DataLoader(dataset=dset,
batch_size=batch_size,
shuffle=shuffle,
pin_memory=True,
collate_fn=collate_fn,
num_workers=num_workers)
return data_loader
def get_loaders(vocab, opt):
train_loader = get_precomp_loader( 'train', vocab,
opt['dataset']['batch_size'], True, opt['dataset']['workers'], opt=opt)
val_loader = get_precomp_loader( 'val', vocab,
opt['dataset']['batch_size_val'], False, opt['dataset']['workers'], opt=opt)
return train_loader, val_loader
def get_test_loader(vocab, opt):
test_loader = get_precomp_loader( 'test', vocab,
opt['dataset']['batch_size_val'], False, opt['dataset']['workers'], opt=opt)
return test_loader