113 lines
4.0 KiB
Python
113 lines
4.0 KiB
Python
|
import os, random, copy
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import argparse
|
||
|
import yaml
|
||
|
import logging
|
||
|
|
||
|
import utils
|
||
|
import data
|
||
|
import engine
|
||
|
|
||
|
from vocab import deserialize_vocab
|
||
|
import mytools
|
||
|
from model import GAC as models
|
||
|
|
||
|
def parser_options():
|
||
|
# Hyper Parameters setting
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--path_opt', default='option/RSITMD_mca/RSITMD_GAC.yaml', type=str,
|
||
|
help='path to a yaml options file')
|
||
|
opt = parser.parse_args()
|
||
|
|
||
|
# load model options
|
||
|
with open(opt.path_opt, 'r') as handle:
|
||
|
options = yaml.safe_load(handle)
|
||
|
|
||
|
return options
|
||
|
|
||
|
def main(options, vocab):
|
||
|
# Create dataset, model, criterion and optimizer
|
||
|
test_loader = data.get_test_loader(vocab, options)
|
||
|
|
||
|
model = models.factory(options['model'],
|
||
|
vocab,
|
||
|
cuda=True,
|
||
|
data_parallel=False)
|
||
|
|
||
|
print('Model has {} parameters'.format(utils.params_count(model)))
|
||
|
|
||
|
# optionally resume from a checkpoint
|
||
|
if os.path.isfile(options['optim']['resume']):
|
||
|
print("=> loading checkpoint '{}'".format(options['optim']['resume']))
|
||
|
checkpoint = torch.load(options['optim']['resume'])
|
||
|
start_epoch = checkpoint['epoch']
|
||
|
best_rsum = checkpoint['best_rsum']
|
||
|
model.load_state_dict(checkpoint['model'])
|
||
|
else:
|
||
|
print("=> no checkpoint found at '{}'".format(options['optim']['resume']))
|
||
|
|
||
|
# evaluate on test set
|
||
|
sims = engine.validate_test(test_loader, model)
|
||
|
|
||
|
# get indicators
|
||
|
(r1i, r5i, r10i, medri, meanri), _ = utils.acc_i2t2(sims)
|
||
|
logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
|
||
|
(r1i, r5i, r10i, medri, meanri))
|
||
|
(r1t, r5t, r10t, medrt, meanrt), _ = utils.acc_t2i2(sims)
|
||
|
logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
|
||
|
(r1t, r5t, r10t, medrt, meanrt))
|
||
|
currscore = (r1t + r5t + r10t + r1i + r5i + r10i)/6.0
|
||
|
|
||
|
all_score = "r1i:{} r5i:{} r10i:{} medri:{} meanri:{}\n r1t:{} r5t:{} r10t:{} medrt:{} meanrt:{}\n sum:{}\n ------\n".format(
|
||
|
r1i, r5i, r10i, medri, meanri, r1t, r5t, r10t, medrt, meanrt, currscore
|
||
|
)
|
||
|
# 记录到输出文件中
|
||
|
outputfile_path = "RSICD_GAC_decay0.5_m0.2_without_m4m5.txt"
|
||
|
with open(outputfile_path, 'a') as file:
|
||
|
file.writelines(options['optim']['resume'])
|
||
|
file.write(all_score)
|
||
|
|
||
|
print(all_score)
|
||
|
|
||
|
return [r1i, r5i, r10i, r1t, r5t, r10t, currscore]
|
||
|
|
||
|
def get_allpth_score(options, k, vocab):
|
||
|
updated_options = copy.deepcopy(options)
|
||
|
scores = []
|
||
|
directory = options['logs']['ckpt_save_path'] + options['k_fold']['experiment_name'] + "/" + str(k)
|
||
|
for root, dirs, files in os.walk(directory):
|
||
|
for file in files:
|
||
|
if file.endswith('.tar'):
|
||
|
file_path = os.path.join(root, file)
|
||
|
updated_options['optim']['resume'] = file_path
|
||
|
# run experiment
|
||
|
one_score = main(updated_options, vocab)
|
||
|
scores.append(one_score)
|
||
|
return scores
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
options = parser_options()
|
||
|
# make vocab
|
||
|
vocab = deserialize_vocab(options['dataset']['vocab_path'])
|
||
|
vocab_word = sorted(vocab.word2idx.items(), key=lambda x: x[1], reverse=False)
|
||
|
vocab_word = [tup[0] for tup in vocab_word]
|
||
|
|
||
|
# calc ave k results
|
||
|
last_score = []
|
||
|
for k in range(options['k_fold']['nums']):
|
||
|
print("=========================================")
|
||
|
print("Start evaluate {}th fold".format(k))
|
||
|
|
||
|
scores = get_allpth_score(options, k, vocab)
|
||
|
last_score.extend(scores)
|
||
|
|
||
|
print("Complete evaluate {}th fold".format(k))
|
||
|
|
||
|
# average
|
||
|
print("===================== Ave Score ({}-fold verify) =================".format(options['k_fold']['nums']))
|
||
|
last_score = np.average(last_score, axis=0)
|
||
|
names = ['r1i', 'r5i', 'r10i', 'r1t', 'r5t', 'r10t', 'mr']
|
||
|
for name,score in zip(names, last_score):
|
||
|
print("{}:{}".format(name, score))
|