65 lines
1.6 KiB
Python
65 lines
1.6 KiB
Python
|
# Author: @vinesmsuic
|
||
|
#
|
||
|
#
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import os
|
||
|
import pickle
|
||
|
from PIL import Image
|
||
|
import binascii
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
def to_hex(byte_list):
|
||
|
bytelist = []
|
||
|
for b in byte_list:
|
||
|
bytelist.append(binascii.hexlify(bytes(b)))
|
||
|
|
||
|
return bytelist
|
||
|
|
||
|
def matrix_from_hex(hex_list):
|
||
|
matrice = []
|
||
|
for hex_str in hex_list:
|
||
|
matrix = np.array([int(hex_str[i:i+2],16) for i in range(0, len(hex_str), 2)])
|
||
|
matrix = np.uint8(matrix)
|
||
|
matrice.append(matrix)
|
||
|
|
||
|
matrice = np.stack(matrice, axis=0)
|
||
|
return matrice
|
||
|
|
||
|
def get_save_path(one_row_df, save_folder):
|
||
|
base = os.path.basename(one_row_df['Path'])
|
||
|
filename = os.path.splitext(base)[0]
|
||
|
|
||
|
ImagePath = os.path.join(save_folder,filename)
|
||
|
return ImagePath
|
||
|
|
||
|
|
||
|
def main():
|
||
|
searching_folder = "3_Packet"
|
||
|
saving_folder = "4_Image"
|
||
|
|
||
|
for f in os.listdir(searching_folder):
|
||
|
if f.endswith(".pkl"):
|
||
|
|
||
|
folder = os.path.join(saving_folder, os.path.splitext(f)[0])
|
||
|
if not os.path.exists(folder):
|
||
|
os.makedirs(folder)
|
||
|
|
||
|
print("Saving to: " + str(folder))
|
||
|
|
||
|
file = open(os.path.join(searching_folder, f), 'rb')
|
||
|
df = pickle.load(file)
|
||
|
file.close()
|
||
|
|
||
|
df['Hex'] = df['Bytes'].apply(to_hex)
|
||
|
df['Matrice'] = df['Hex'].apply(matrix_from_hex)
|
||
|
|
||
|
for index, row in tqdm(df.iterrows()):
|
||
|
ImagePath = get_save_path(row, folder)
|
||
|
im = Image.fromarray(row['Matrice'])
|
||
|
im.save(str(ImagePath)+".png")
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|