146 lines
5.2 KiB
Python
146 lines
5.2 KiB
Python
|
import torch
|
||
|
import torch.utils.data as data
|
||
|
import torchvision.transforms as transforms
|
||
|
import os
|
||
|
import nltk
|
||
|
import numpy as np
|
||
|
import yaml
|
||
|
import argparse
|
||
|
import utils
|
||
|
from vocab import deserialize_vocab
|
||
|
from PIL import Image
|
||
|
|
||
|
class PrecompDataset(data.Dataset):
|
||
|
"""
|
||
|
Load precomputed captions and image features
|
||
|
"""
|
||
|
|
||
|
def __init__(self, data_split, vocab, opt):
|
||
|
self.vocab = vocab
|
||
|
self.loc = opt['dataset']['data_path']
|
||
|
self.img_path = opt['dataset']['image_path']
|
||
|
|
||
|
# Captions
|
||
|
self.images = []
|
||
|
self.captions = []
|
||
|
self.maxlength = 0
|
||
|
|
||
|
if data_split != 'test':
|
||
|
with open(self.loc+'%s_caps_verify.txt' % data_split, 'rb') as f:
|
||
|
for line in f:
|
||
|
self.captions.append(line.strip())
|
||
|
|
||
|
with open(self.loc + '%s_filename_verify.txt' % data_split, 'rb') as f:
|
||
|
for line in f:
|
||
|
self.images.append(line.strip())
|
||
|
else:
|
||
|
with open(self.loc + '%s_caps.txt' % data_split, 'rb') as f:
|
||
|
for line in f:
|
||
|
self.captions.append(line.strip())
|
||
|
|
||
|
with open(self.loc + '%s_filename.txt' % data_split, 'rb') as f:
|
||
|
for line in f:
|
||
|
self.images.append(line.strip())
|
||
|
|
||
|
self.length = len(self.captions)
|
||
|
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
|
||
|
if len(self.images) != self.length:
|
||
|
self.im_div = 5
|
||
|
else:
|
||
|
self.im_div = 1
|
||
|
|
||
|
if data_split == "train":
|
||
|
self.transform = transforms.Compose([
|
||
|
# transforms.Resize((278, 278)),
|
||
|
transforms.Resize((256, 256)),
|
||
|
transforms.RandomRotation(degrees=(0, 90)),
|
||
|
# transforms.RandomCrop(256),
|
||
|
transforms.RandomCrop(224),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize((0.485, 0.456, 0.406),
|
||
|
(0.229, 0.224, 0.225))])
|
||
|
else:
|
||
|
self.transform = transforms.Compose([
|
||
|
# transforms.Resize((256, 256)),
|
||
|
transforms.Resize((224, 224)),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize((0.485, 0.456, 0.406),
|
||
|
(0.229, 0.224, 0.225))])
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
# handle the image redundancy
|
||
|
img_id = index//self.im_div
|
||
|
caption = self.captions[index]
|
||
|
|
||
|
vocab = self.vocab
|
||
|
|
||
|
# Convert caption (string) to word ids.
|
||
|
tokens = nltk.tokenize.word_tokenize(
|
||
|
caption.lower().decode('utf-8'))
|
||
|
punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
|
||
|
tokens = [k for k in tokens if k not in punctuations]
|
||
|
tokens_UNK = [k if k in vocab.word2idx.keys() else '<unk>' for k in tokens]
|
||
|
|
||
|
|
||
|
caption = []
|
||
|
caption.append(vocab('<start>'))
|
||
|
caption.extend([vocab(token) for token in tokens_UNK])
|
||
|
caption.append(vocab('<end>'))
|
||
|
target = torch.LongTensor(caption)
|
||
|
|
||
|
image = Image.open(self.img_path + str(self.images[img_id])[2:-1]).convert('RGB')
|
||
|
image = self.transform(image) # torch.Size([3, 256, 256])
|
||
|
|
||
|
return image, target, index, img_id
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.length
|
||
|
|
||
|
|
||
|
def collate_fn(data):
|
||
|
|
||
|
# Sort a data list by caption length
|
||
|
data.sort(key=lambda x: len(x[1]), reverse=True)
|
||
|
images, captions, ids, img_ids = zip(*data)
|
||
|
|
||
|
# Merge images (convert tuple of 3D tensor to 4D tensor)
|
||
|
images = torch.stack(images, 0)
|
||
|
|
||
|
# Merget captions (convert tuple of 1D tensor to 2D tensor)
|
||
|
lengths = [len(cap) for cap in captions]
|
||
|
targets = torch.zeros(len(captions), max(lengths)).long()
|
||
|
for i, cap in enumerate(captions):
|
||
|
end = lengths[i]
|
||
|
targets[i, :end] = cap[:end]
|
||
|
|
||
|
lengths = [l if l !=0 else 1 for l in lengths]
|
||
|
|
||
|
return images, targets, lengths, ids
|
||
|
|
||
|
|
||
|
def get_precomp_loader(data_split, vocab, batch_size=100,
|
||
|
shuffle=True, num_workers=0, opt={}):
|
||
|
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
|
||
|
dset = PrecompDataset(data_split, vocab, opt)
|
||
|
|
||
|
data_loader = torch.utils.data.DataLoader(dataset=dset,
|
||
|
batch_size=batch_size,
|
||
|
shuffle=shuffle,
|
||
|
pin_memory=True,
|
||
|
collate_fn=collate_fn,
|
||
|
num_workers=num_workers)
|
||
|
return data_loader
|
||
|
|
||
|
def get_loaders(vocab, opt):
|
||
|
train_loader = get_precomp_loader( 'train', vocab,
|
||
|
opt['dataset']['batch_size'], True, opt['dataset']['workers'], opt=opt)
|
||
|
val_loader = get_precomp_loader( 'val', vocab,
|
||
|
opt['dataset']['batch_size_val'], False, opt['dataset']['workers'], opt=opt)
|
||
|
return train_loader, val_loader
|
||
|
|
||
|
|
||
|
def get_test_loader(vocab, opt):
|
||
|
test_loader = get_precomp_loader( 'test', vocab,
|
||
|
opt['dataset']['batch_size_val'], False, opt['dataset']['workers'], opt=opt)
|
||
|
return test_loader
|