Graduation_Project/WZM/util/convert_data.py

85 lines
3.1 KiB
Python
Raw Normal View History

2024-06-24 19:41:48 +08:00
# -----------------------------------------------------------
# Stacked Cross Attention Network implementation based on
# https://arxiv.org/abs/1803.08024.
# "Stacked Cross Attention for Image-Text Matching"
# Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, Xiaodong He
#
# Writen by Kuang-Huei Lee, 2018
# ---------------------------------------------------------------
"""Convert image features from bottom up attention to numpy array"""
import os
import base64
import csv
import sys
import zlib
import json
import argparse
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--imgid_list', default='../data/coco_precomp/train_ids.txt',
help='Path to list of image id')
parser.add_argument('--input_file', default=['../data/bu_data/trainval/karpathy_train_resnet101_faster_rcnn_genome.tsv.0'],
# ,'../data/bu_data/trainval/karpathy_train_resnet101_faster_rcnn_genome.tsv.1'],
help='tsv of all image data (output of bottom-up-attention/tools/generate_tsv.py), \
where each columns are: [image_id, image_w, image_h, num_boxes, boxes, features].')
parser.add_argument('--output_dir', default='../data/coco_precomp/',
help='Output directory.')
parser.add_argument('--split', default='train',
help='train|dev|test')
opt = parser.parse_args()
print(opt)
meta = []
feature = {}
for line in open(opt.imgid_list):
sid = int(line.strip())
meta.append(sid)
feature[sid] = None
maxInt = sys.maxsize
while True:
# decrease the maxInt value by factor 10
# as long as the OverflowError occurs.
try:
csv.field_size_limit(maxInt)
break
except OverflowError:
maxInt = int(maxInt/10)
FIELDNAMES = ['image_id', 'image_w', 'image_h', 'num_boxes', 'boxes', 'features']
if __name__ == '__main__':
for input_file in opt.input_file:
with open(input_file, "r+t") as tsv_in_file:
reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames = FIELDNAMES)
for item in reader:
item['image_id'] = int(item['image_id'])
item['image_h'] = int(item['image_h'])
item['image_w'] = int(item['image_w'])
item['num_boxes'] = int(item['num_boxes'])
for field in ['boxes', 'features']:
item[field] = np.frombuffer(base64.decodestring(item[field].encode()),
dtype=np.float32).reshape((item['num_boxes'],-1))
if item['image_id'] in feature:
feature[item['image_id']] = item['features']
# Padding
data_out = []
for sid in meta:
padding_data = np.zeros((36,2048))
region_num = np.shape(feature[sid])[0]
if region_num <= 36:
padding_data[:region_num, :] = feature[sid]
else:
padding_data = feature[sid][:36, :]
data_out.append(padding_data)
data_out = np.stack(data_out, axis=0)
print("Final numpy array shape:", data_out.shape)
np.save(os.path.join(opt.output_dir, '{}_ims.npy'.format(opt.split)), data_out)