Compare commits
2 Commits
0386b973c6
...
4591deccee
Author | SHA1 | Date |
---|---|---|
Huey | 4591deccee | |
Huey | 96b095a3d6 |
|
@ -0,0 +1,117 @@
|
|||
import nltk
|
||||
from collections import Counter
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
|
||||
annotations = {
|
||||
'coco_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
|
||||
'flickr30k_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
|
||||
'rsicd_precomp': ['train_caps.txt', 'test_caps.txt'],
|
||||
'rsitmd_precomp': ['train_caps.txt', 'test_caps.txt'],
|
||||
'ucm_precomp': ['train_caps.txt', 'val_caps.txt'],
|
||||
'sydney_precomp': ['train_caps.txt', 'val_caps.txt'],
|
||||
}
|
||||
|
||||
|
||||
class Vocabulary(object):
|
||||
"""Simple vocabulary wrapper."""
|
||||
|
||||
def __init__(self):
|
||||
self.word2idx = {}
|
||||
self.idx2word = {}
|
||||
self.idx = 0
|
||||
|
||||
def add_word(self, word):
|
||||
if word not in self.word2idx:
|
||||
self.word2idx[word] = self.idx
|
||||
self.idx2word[self.idx] = word
|
||||
self.idx += 1
|
||||
|
||||
def __call__(self, word):
|
||||
if word not in self.word2idx:
|
||||
return self.word2idx['<unk>']
|
||||
return self.word2idx[word]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.word2idx)
|
||||
|
||||
|
||||
def serialize_vocab(vocab, dest):
|
||||
d = {}
|
||||
d['word2idx'] = vocab.word2idx
|
||||
d['idx2word'] = vocab.idx2word
|
||||
d['idx'] = vocab.idx
|
||||
with open(dest, "w") as f:
|
||||
json.dump(d, f)
|
||||
|
||||
|
||||
def deserialize_vocab(src):
|
||||
with open(src) as f:
|
||||
d = json.load(f)
|
||||
vocab = Vocabulary()
|
||||
vocab.word2idx = d['word2idx']
|
||||
vocab.idx2word = d['idx2word']
|
||||
vocab.idx = d['idx']
|
||||
return vocab
|
||||
|
||||
|
||||
def from_txt(txt):
|
||||
captions = []
|
||||
with open(txt, 'rb') as f:
|
||||
for line in f:
|
||||
captions.append(line.strip())
|
||||
return captions
|
||||
|
||||
|
||||
def build_vocab(data_path, data_name, caption_file, threshold):
|
||||
"""Build a simple vocabulary wrapper."""
|
||||
|
||||
stopword_list = list(set(nltk.corpus.stopwords.words('english')))
|
||||
counter = Counter()
|
||||
for path in caption_file[data_name]:
|
||||
full_path = os.path.join(os.path.join(data_path, data_name), path)
|
||||
captions = from_txt(full_path)
|
||||
|
||||
for i, caption in enumerate(captions):
|
||||
tokens = nltk.tokenize.word_tokenize(
|
||||
caption.lower().decode('utf-8'))
|
||||
punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
|
||||
tokens = [k for k in tokens if k not in punctuations]
|
||||
tokens = [k for k in tokens if k not in stopword_list]
|
||||
counter.update(tokens)
|
||||
|
||||
if i % 1000 == 0:
|
||||
print("[%d/%d] tokenized the captions." % (i, len(captions)))
|
||||
|
||||
# Discard if the occurrence of the word is less than min_word_cnt.
|
||||
words = [word for word, cnt in counter.items() if cnt >= threshold]
|
||||
|
||||
# Create a vocab wrapper and add some special tokens.
|
||||
vocab = Vocabulary()
|
||||
vocab.add_word('<pad>')
|
||||
# vocab.add_word('<start>')
|
||||
# vocab.add_word('<end>')
|
||||
vocab.add_word('<unk>')
|
||||
|
||||
# Add words to the vocabulary.
|
||||
for i, word in enumerate(words):
|
||||
vocab.add_word(word)
|
||||
# vocab.add_word('<unk>')
|
||||
return vocab
|
||||
|
||||
|
||||
def main(data_path, data_name):
|
||||
vocab = build_vocab(data_path, data_name, caption_file=annotations, threshold=4)
|
||||
serialize_vocab(vocab, 'vocab/%s_vocab.json' % data_name)
|
||||
print("Saved vocabulary file to ", 'vocab/%s_vocab.json' %(data_name))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data_path', default='data')
|
||||
parser.add_argument('--data_name', default='rsitmd_precomp',
|
||||
help='{coco,f30k}')
|
||||
opt = parser.parse_args()
|
||||
main(opt.data_path, opt.data_name)
|
|
@ -0,0 +1,119 @@
|
|||
import numpy as np
|
||||
import nltk
|
||||
from collections import Counter
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
|
||||
annotations = {
|
||||
'coco_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
|
||||
'flickr30k_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
|
||||
'rsicd_precomp': ['train_caps.txt', 'test_caps.txt'],
|
||||
'rsitmd_precomp': ['train_caps.txt', 'test_caps.txt'],
|
||||
'ucm_precomp': ['train_caps.txt', 'val_caps.txt'],
|
||||
'sydney_precomp': ['train_caps.txt', 'val_caps.txt'],
|
||||
}
|
||||
|
||||
|
||||
class Vocabulary(object):
|
||||
"""Simple vocabulary wrapper."""
|
||||
|
||||
def __init__(self):
|
||||
self.word2idx = {}
|
||||
self.idx2word = {}
|
||||
self.idx = 0
|
||||
|
||||
def add_word(self, word):
|
||||
if word not in self.word2idx:
|
||||
self.word2idx[word] = self.idx
|
||||
self.idx2word[self.idx] = word
|
||||
self.idx += 1
|
||||
|
||||
def __call__(self, word):
|
||||
if word not in self.word2idx:
|
||||
return self.word2idx['<unk>']
|
||||
return self.word2idx[word]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.word2idx)
|
||||
|
||||
|
||||
def serialize_vocab(vocab, dest):
|
||||
d = {}
|
||||
d['word2idx'] = vocab.word2idx
|
||||
d['idx2word'] = vocab.idx2word
|
||||
d['idx'] = vocab.idx
|
||||
with open(dest, "w") as f:
|
||||
json.dump(d, f)
|
||||
|
||||
|
||||
def deserialize_vocab(src):
|
||||
with open(src) as f:
|
||||
d = json.load(f)
|
||||
vocab = Vocabulary()
|
||||
vocab.word2idx = d['word2idx']
|
||||
vocab.idx2word = d['idx2word']
|
||||
vocab.idx = d['idx']
|
||||
return vocab
|
||||
|
||||
|
||||
def from_txt(txt):
|
||||
captions = []
|
||||
with open(txt, 'rb') as f:
|
||||
for line in f:
|
||||
captions.append(line.strip())
|
||||
return captions
|
||||
|
||||
|
||||
def build_vocab(data_path, data_name, caption_file, threshold):
|
||||
"""Build a simple vocabulary wrapper."""
|
||||
|
||||
# stopword_list = list(set(nltk.corpus.stopwords.words('english')))
|
||||
# counter = Counter()
|
||||
# for path in caption_file[data_name]:
|
||||
# full_path = os.path.join(os.path.join(data_path, data_name), path)
|
||||
# captions = from_txt(full_path)
|
||||
|
||||
# for i, caption in enumerate(captions):
|
||||
# tokens = nltk.tokenize.word_tokenize(
|
||||
# caption.lower().decode('utf-8'))
|
||||
# punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
|
||||
# tokens = [k for k in tokens if k not in punctuations]
|
||||
# tokens = [k for k in tokens if k not in stopword_list]
|
||||
# counter.update(tokens)
|
||||
|
||||
# if i % 1000 == 0:
|
||||
# print("[%d/%d] tokenized the captions." % (i, len(captions)))
|
||||
|
||||
# # Discard if the occurrence of the word is less than min_word_cnt.
|
||||
# words = [word for word, cnt in counter.items() if cnt >= threshold]
|
||||
|
||||
# Create a vocab wrapper and add some special tokens.
|
||||
words = np.load('/home/wzm/crossmodal/vocab_npa.npy')
|
||||
vocab = Vocabulary()
|
||||
# vocab.add_word('<pad>')
|
||||
# vocab.add_word('<start>')
|
||||
# vocab.add_word('<end>')
|
||||
# vocab.add_word('<unk>')
|
||||
|
||||
# Add words to the vocabulary.
|
||||
for i, word in enumerate(words):
|
||||
vocab.add_word(word)
|
||||
# vocab.add_word('<unk>')
|
||||
return vocab
|
||||
|
||||
|
||||
def main(data_path, data_name):
|
||||
vocab = build_vocab(data_path, data_name, caption_file=annotations, threshold=4)
|
||||
serialize_vocab(vocab, 'vocab/%s_vocab.json' % data_name)
|
||||
print("Saved vocabulary file to ", 'vocab/%s_vocab.json' %(data_name))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data_path', default='data')
|
||||
parser.add_argument('--data_name', default='rsitmd_precomp',
|
||||
help='{coco,f30k}')
|
||||
opt = parser.parse_args()
|
||||
main(opt.data_path, opt.data_name)
|
Loading…
Reference in New Issue