Compare commits

...

2 Commits

Author SHA1 Message Date
Huey 4591deccee first 2024-06-24 19:40:14 +08:00
Huey 96b095a3d6 first 2024-06-24 19:40:04 +08:00
2 changed files with 236 additions and 0 deletions

117
WZM/vocab.py Normal file
View File

@ -0,0 +1,117 @@
import nltk
from collections import Counter
import argparse
import os
import json
annotations = {
'coco_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
'flickr30k_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
'rsicd_precomp': ['train_caps.txt', 'test_caps.txt'],
'rsitmd_precomp': ['train_caps.txt', 'test_caps.txt'],
'ucm_precomp': ['train_caps.txt', 'val_caps.txt'],
'sydney_precomp': ['train_caps.txt', 'val_caps.txt'],
}
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if word not in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if word not in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def serialize_vocab(vocab, dest):
d = {}
d['word2idx'] = vocab.word2idx
d['idx2word'] = vocab.idx2word
d['idx'] = vocab.idx
with open(dest, "w") as f:
json.dump(d, f)
def deserialize_vocab(src):
with open(src) as f:
d = json.load(f)
vocab = Vocabulary()
vocab.word2idx = d['word2idx']
vocab.idx2word = d['idx2word']
vocab.idx = d['idx']
return vocab
def from_txt(txt):
captions = []
with open(txt, 'rb') as f:
for line in f:
captions.append(line.strip())
return captions
def build_vocab(data_path, data_name, caption_file, threshold):
"""Build a simple vocabulary wrapper."""
stopword_list = list(set(nltk.corpus.stopwords.words('english')))
counter = Counter()
for path in caption_file[data_name]:
full_path = os.path.join(os.path.join(data_path, data_name), path)
captions = from_txt(full_path)
for i, caption in enumerate(captions):
tokens = nltk.tokenize.word_tokenize(
caption.lower().decode('utf-8'))
punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
tokens = [k for k in tokens if k not in punctuations]
tokens = [k for k in tokens if k not in stopword_list]
counter.update(tokens)
if i % 1000 == 0:
print("[%d/%d] tokenized the captions." % (i, len(captions)))
# Discard if the occurrence of the word is less than min_word_cnt.
words = [word for word, cnt in counter.items() if cnt >= threshold]
# Create a vocab wrapper and add some special tokens.
vocab = Vocabulary()
vocab.add_word('<pad>')
# vocab.add_word('<start>')
# vocab.add_word('<end>')
vocab.add_word('<unk>')
# Add words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
# vocab.add_word('<unk>')
return vocab
def main(data_path, data_name):
vocab = build_vocab(data_path, data_name, caption_file=annotations, threshold=4)
serialize_vocab(vocab, 'vocab/%s_vocab.json' % data_name)
print("Saved vocabulary file to ", 'vocab/%s_vocab.json' %(data_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='data')
parser.add_argument('--data_name', default='rsitmd_precomp',
help='{coco,f30k}')
opt = parser.parse_args()
main(opt.data_path, opt.data_name)

119
WZM/vocab_glove.py Normal file
View File

@ -0,0 +1,119 @@
import numpy as np
import nltk
from collections import Counter
import argparse
import os
import json
annotations = {
'coco_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
'flickr30k_splits': ['train_caps.txt', 'val_caps.txt', 'test_caps.txt'],
'rsicd_precomp': ['train_caps.txt', 'test_caps.txt'],
'rsitmd_precomp': ['train_caps.txt', 'test_caps.txt'],
'ucm_precomp': ['train_caps.txt', 'val_caps.txt'],
'sydney_precomp': ['train_caps.txt', 'val_caps.txt'],
}
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if word not in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if word not in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def serialize_vocab(vocab, dest):
d = {}
d['word2idx'] = vocab.word2idx
d['idx2word'] = vocab.idx2word
d['idx'] = vocab.idx
with open(dest, "w") as f:
json.dump(d, f)
def deserialize_vocab(src):
with open(src) as f:
d = json.load(f)
vocab = Vocabulary()
vocab.word2idx = d['word2idx']
vocab.idx2word = d['idx2word']
vocab.idx = d['idx']
return vocab
def from_txt(txt):
captions = []
with open(txt, 'rb') as f:
for line in f:
captions.append(line.strip())
return captions
def build_vocab(data_path, data_name, caption_file, threshold):
"""Build a simple vocabulary wrapper."""
# stopword_list = list(set(nltk.corpus.stopwords.words('english')))
# counter = Counter()
# for path in caption_file[data_name]:
# full_path = os.path.join(os.path.join(data_path, data_name), path)
# captions = from_txt(full_path)
# for i, caption in enumerate(captions):
# tokens = nltk.tokenize.word_tokenize(
# caption.lower().decode('utf-8'))
# punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
# tokens = [k for k in tokens if k not in punctuations]
# tokens = [k for k in tokens if k not in stopword_list]
# counter.update(tokens)
# if i % 1000 == 0:
# print("[%d/%d] tokenized the captions." % (i, len(captions)))
# # Discard if the occurrence of the word is less than min_word_cnt.
# words = [word for word, cnt in counter.items() if cnt >= threshold]
# Create a vocab wrapper and add some special tokens.
words = np.load('/home/wzm/crossmodal/vocab_npa.npy')
vocab = Vocabulary()
# vocab.add_word('<pad>')
# vocab.add_word('<start>')
# vocab.add_word('<end>')
# vocab.add_word('<unk>')
# Add words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
# vocab.add_word('<unk>')
return vocab
def main(data_path, data_name):
vocab = build_vocab(data_path, data_name, caption_file=annotations, threshold=4)
serialize_vocab(vocab, 'vocab/%s_vocab.json' % data_name)
print("Saved vocabulary file to ", 'vocab/%s_vocab.json' %(data_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='data')
parser.add_argument('--data_name', default='rsitmd_precomp',
help='{coco,f30k}')
opt = parser.parse_args()
main(opt.data_path, opt.data_name)