from queue import Queue from threading import Thread import h5py import nltk import torch import torch.utils.data as data import os import numpy as np import json from torch.utils.data import DataLoader from prefetch_generator import BackgroundGenerator from transformers import BertTokenizer class DataLoaderX(DataLoader): def __iter__(self): return BackgroundGenerator(super().__iter__()) class PrecompShuffleDataset(data.Dataset): """ Load precomputed captions and image features Possible options: f30k_precomp, coco_precomp """ def __init__(self, data_path, data_split, vocab): print('word txt encoder') self.vocab = vocab loc = data_path + '/' self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # Captions self.captions = [] with open(loc+'%s_caps.txt' % data_split, 'rb') as f: for line in f: self.captions.append(line.strip().decode('utf-8')) self.data_split = data_split # if self.data_split == 'test': # self.bbox = np.load(loc + '%s_ims_bbx.npy' % data_split) # self.sizes = np.load(loc + '%s_ims_size.npy' % data_split, allow_pickle=True) # self.tags = [] # with open(loc + '%s_tags_new.txt' % data_split, 'rb') as f: # for line in f: # self.tags.append(line.strip().decode('utf-8')) # Image features print('loading npy') self.images = np.load(loc+'%s_ims.npy' % data_split, mmap_mode = 'r') #print(len(self.images), len(self.captions)) #self.images = np.load(loc + '%s_ims.npy' % data_split) print('done load npy') self.length = len(self.captions) # self.length = 10000 # rkiros data has redundancy in images, we divide by 5, 10crop doesn't if self.images.shape[0] != self.length: self.im_div = 5 else: self.im_div = 1 # the development set for coco is large and so validation would be slow if data_split == 'shuffle_dev': self.length = 20000 self.im_div = 4 if data_split == 'shuffle_train': #self.length = 20000 self.im_div = 20 def __getitem__(self, index): # handle the image redundancy img_id = int(index/self.im_div) image = torch.Tensor(self.images[img_id]) caption = self.captions[index] vocab = self.vocab caption = caption.replace('.', '.[SEP]')[:-6] caption = self.tokenizer.encode(caption) target = torch.Tensor(caption) # Convert caption (string) to word ids. # tokens = nltk.tokenize.word_tokenize( # caption.encode('utf-8').decode('utf-8')) # caption = [] # caption.append(vocab('')) # caption.extend([vocab(str(token).lower()) for token in tokens]) # caption.append(vocab('')) # # assert(len(caption) - 2== len(new_tags)) # target = torch.Tensor(caption) # # new_tags = torch.Tensor(new_tags) return image, target, index, img_id def __len__(self): return self.length class PrecompDataset(data.Dataset): """ Load precomputed captions and image features Possible options: f30k_precomp, coco_precomp """ def __init__(self, data_path, data_split, vocab): print('word txt encoder') self.vocab = vocab loc = data_path + '/' self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # Captions self.captions = [] with open(loc+'%s_caps.txt' % data_split, 'rb') as f: for line in f: self.captions.append(line.strip().decode('utf-8')) self.data_split = data_split # if self.data_split == 'test': # self.bbox = np.load(loc + '%s_ims_bbx.npy' % data_split) # self.sizes = np.load(loc + '%s_ims_size.npy' % data_split, allow_pickle=True) # self.tags = [] # with open(loc + '%s_tags_new.txt' % data_split, 'rb') as f: # for line in f: # self.tags.append(line.strip().decode('utf-8')) # Image features print('loading npy') self.images = np.load(loc+'%s_ims.npy' % data_split, mmap_mode = 'r') #self.images = np.load(loc + '%s_ims.npy' % data_split) print('done load npy') self.length = len(self.captions) # self.length = 10000 # rkiros data has redundancy in images, we divide by 5, 10crop doesn't if self.images.shape[0] != self.length: self.im_div = 5 else: self.im_div = 1 # the development set for coco is large and so validation would be slow if data_split == 'dev': self.length = 5000 def __getitem__(self, index): # handle the image redundancy img_id = int(index/self.im_div) image = torch.Tensor(self.images[img_id]) caption = self.captions[index] vocab = self.vocab caption = self.tokenizer.encode(caption) target = torch.Tensor(caption) # Convert caption (string) to word ids. # tokens = nltk.tokenize.word_tokenize( # caption.encode('utf-8').decode('utf-8')) # caption = [] # caption.append(vocab('')) # caption.extend([vocab(str(token).lower()) for token in tokens]) # caption.append(vocab('')) # # assert(len(caption) - 2== len(new_tags)) # target = torch.Tensor(caption) # # new_tags = torch.Tensor(new_tags) return image, target, index, img_id def __len__(self): return self.length def collate_fn(data): """Build mini-batch tensors from a list of (image, caption) tuples. Args: data: list of (image, caption) tuple. - image: torch tensor of shape (3, 256, 256). - caption: torch tensor of shape (?); variable length. Returns: images: torch tensor of shape (batch_size, 3, 256, 256). targets: torch tensor of shape (batch_size, padded_length). lengths: list; valid length for each padded caption. """ # Sort a data list by caption length data.sort(key=lambda x: len(x[1]), reverse=True) images, captions, ids, img_ids = zip(*data) # Merge images (convert tuple of 3D tensor to 4D tensor) images = torch.stack(images, 0) # Merget captions (convert tuple of 1D tensor to 2D tensor) lengths = torch.LongTensor([len(cap) for cap in captions]) #print(lengths.dtype, lengths.shape) targets = torch.zeros(len(captions), max(lengths)).long() for i, cap in enumerate(captions): end = lengths[i] targets[i, :end] = cap[:end] img_lengths = [len(image) for image in images] img_lengths = torch.Tensor(img_lengths) return images, img_lengths, targets, lengths, ids def get_precomp_loader(data_path, data_split, vocab, opt, batch_size=100, shuffle=True, num_workers=0): """Returns torch.utils.data.DataLoader for custom coco dataset.""" dset = PrecompDataset(data_path, data_split, vocab) #dset = PrecompShuffleDataset(data_path, data_split, vocab) # train_sampler = torch.utils.data.distributed.DistributedSampler(dset) # if data_split == 'train': # data_loader = DataLoader(dataset=dset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True, collate_fn=collate_fn, sampler=train_sampler) # else: print(num_workers) data_loader = DataLoaderX(dataset=dset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, collate_fn=collate_fn) return data_loader def get_loaders(data_name, vocab, batch_size, workers, opt): dpath = os.path.join(opt.data_path, data_name) train_loader = get_precomp_loader(dpath, 'train', vocab, opt, batch_size, True, workers) val_loader = get_precomp_loader(dpath, 'dev', vocab, opt, batch_size, False, workers) # train_loader = get_precomp_loader(dpath, 'shuffle_train', vocab, opt, # batch_size, True, workers) # val_loader = get_precomp_loader(dpath, 'shuffle_dev', vocab, opt, # batch_size, False, workers) return train_loader, val_loader def get_test_loader(split_name, data_name, vocab, batch_size, workers, opt): dpath = os.path.join(opt.data_path, data_name) test_loader = get_precomp_loader(dpath, split_name, vocab, opt, batch_size, False, workers) return test_loader